JAWAPAN - mediastreet.com.mymediastreet.com.my/impak_A+_jawapan/impak A+ Maths Tg 4 -Jawapan.pdf ·...

Click here to load reader

  • date post

    11-Apr-2019
  • Category

    Documents

  • view

    269
  • download

    0

Embed Size (px)

Transcript of JAWAPAN - mediastreet.com.mymediastreet.com.my/impak_A+_jawapan/impak A+ Maths Tg 4 -Jawapan.pdf ·...

J1 Global Mediastreet Sdn. Bhd. (762284-U)

BAB 1 Bentuk Piawai 1.1 Angka Bererti 1 (a) 5 angka bererti (b) 3 angka bererti (c) 2 angka bererti (d) 5 angka bererti (e) 3 angka bererti 2 (a) 159 000 (b) 46 000 (c) 0.46 (d) 20.3 (e) 0.00059 3 Bundarkan

kepada 3 angka berertiFaktor

penghubung

4.10376 501 654as

(a) 4.10 (b) 502 000

as

87 632 0.001367

(c) 87 600 (d) 0.00137

as

4 (a) 0.347 100 6.8 = 0.00347 6.8 = 0.023596 = 0.0236 [3 angka bererti] (b) 7.2 12.3 4 = 88.56 4 = 22.14 = 22.1 [3 angka bererti] (c) 4 207 8 432 = (4 207 8) 432 = 33 656 432 = 33 224 = 33 200 (d) 4.32 0.08 + 5.216 = 0.3456 + 5.216 = 5.5616 = 5.56 [3 angka bererti] (e) 2.34 4.11 6 = 9.6174 6 = 1.6029 = 1.60 [3 angka bererti] (f) 65.317 6.2 0.04 = 10.535 0.04 = 263.375 = 260 [2 angka bererti] (g) 234 25 + 678 = 5 850 + 678 = 6 528 = 6 500 [2 angka bererti] 5 (a) 512 16 8 = 32 8 = 256 = 260 [2 angka bererti] (b) 2 231 1 034 + (4 212) = 1 197 + 848 = 2 045 = 2 050 [3 angka bererti]

Latihan Bestari 1.1 1 2 340 12 6 = 28 080 6 = 4 680 = 4 700 [2 angka bererti] 2 54 662 540 9 = 54 662 60 = 54 602 = 55 600 [2 angka bererti] 3 (23.4 2.7) =7.95 [3 angka bererti] 4 (31 872 64)

16 = 2 039 808 16

= 127 488 = 127 000 [3 angka bererti]

1.2 Bentuk Piawai 1 (a) 5.64 3 102 (b) 2.187 3 103 (c) 7.658 3 104 (d) 4.5 3 105 (e) 8.679 3 104 2 (a) 61 200 (b) 0.02135 (c) 5 678 (d) 0.0007324 (e) 0.005213 3 (a) 2.3 102 + 5.6 103 = 2.3 102 + 0.56 102 = 2.86 102 (b) 7 104 2.3 104 = 4.7 104 (c) 5.9 103 + 4.1 102 = 5.9 103 + 0.41 103 = 6.31 103 (d) 6.3 103 9.1 104 = 6.3 103 0.91 103 = 5.39 103 (e) 2.5 102 3.6 103 = 2.5 102 0.36 102 = 2.14 102 (f) 2.1 106 + 3.8 105 = 2.1 106 + 0.38 106 = 2.48 106 (g) 4.7 105 1.8 104 = 4.7 105 0.18 105 = 4.52 105 (h) 3.5 103 + 420 = 3.5 103 + 4.2 102 = 3.5 103 + 0.42 103 = 3.92 103 4 (a) 6.2 105 2.8 103 = 1.736 107 (b) 9 104 1.6 103 = 14.4 107 = 1.44 108 (c) 2.64 102 4 103 = 0.66 101 = 6.6 (d) 7.2 104 8 104 = 0.9 108 = 9 107 5 (a) Lebar buku = 4.6 103 230 = 4.6 103 2.3 102 = 2 101 mm (b) 5.6 104 kg 245 980 = 2.277 109 kg

Latihan Bestari 1.2 1 (a) 2.34 3 105 (b) 5.21 3 104 (c) 6.501 3 106 (d) 2.1 3 106 2 (a) 51 600 (b) 0.0000602 (c) 3 000 000 (d) 0.008912 3 (a) 70 000 + 56 400 = 7 3 104 + 5.64 3 104 = (7 + 5.64) 3 104 = 12.64 3 104 = 1.264 3 101 3 104 = 1.264 3 105 (b) 7.6 3 104 2.3 3 103 = 7.6 3 104 0.23 3 104 = (7.6 0.23) 3 104 = 7.37 3 104 (c) 0.065 3 0.3 = 6.5 3 102 3 3 3 101 = (6.5 3 3) 3 102 + (1) = 19.5 3 103 = 1.95 3 101 3 103 = 1.95 3 102 (d) 5.04 3 105 4 7 3 102 = (5.04 4 7) 3 105 (2) = 0.72 3 107

= 7.2 3 101 3 107 = 7.2 3 106

SUDUT KBATIsi padu setiap kubus = 343 cm3 8 = 42.875 cm3

Maka, panjang tepi kubus = 342.875 = 3.5 cmLuas setiap muka kubus = 3.52 cm2 = 12.25 cm2Maka, jumlah luas permukaan bongkah kayu dalam Rajah Q = 12.25 cm2 3 24 = 294 cm2 = 2.94 3 102 cm2

PRAKTIS BAB 1Soalan Objektif 1 A 2 B 3 B 4 A 5 B 6 D 7 D 8 D 9 D 10 B11 C 12 A 13 A 14 A 15 D16 B 17 D 18 A 19 B 20 D

BAB 2Ungkapan dan Persamaan Kuadratik

2.1 Ungkapan Kuadratik 1 2k2 + 3, 6x + 4x2, t2 + 4 8t, y2 + 2y

2 (a) (5y + 4) 15

y = y2 + 45

y (b) 3(w + 2)2 = 3(w2 + 4w + 4) = 3w2 + 12w + 12 (c) (2y 3)2 = 4y2 + 12y + 9 (d) (2y 1)(2y 2) = 4y2 4y 2y + 2 = 4y2 6y + 2 (e) (4p + 9)(p 1) = 4p2 4p + 9p 9 = 4p2 + 5p 9

3 (a) Luas segi tiga = 12

(2x + 1)(x 3) = 1

2 (2x2 6x + x 3)

= 1

2 (2x2 5x 3)

= x2 52 x

32 cm

2

(b) Luas segi empat sama = (q 2)(q 2) = (q2 4q + 4) cm2

Latihan Bestari 2.1 1 (a) Ya (b) Ya (c) Bukan (d) Ya 2 (a) 6x(x 5) = 6x2 30x (b) 5x(x + 2) = 5x2 10x (c) (3x 4)(3x 4) = 9x2 12x 12x + 16 = 9x2 24x + 16 (d) (2x + 3)(3x 4) = 6x2 8x + 9x 12 = 6x2 + x 12 3 (x 3)(4x + 1) = 4x2 + x 12x 3 = 4x2 11x 3

JAWAPAN

Anjakan Prima Math F4 Jaw 4th.indd 1 9/10/2017 3:50:28 PM

J2 Global Mediastreet Sdn. Bhd. (762284-U)

2.2 Pemfaktoran Ungkapan Kuadratik 1 (a) 2(y2 6) (b) 8(2 t2) (c) 2(3 + y2) (d) 7m(1 3m) (e) y(4y 5) (f) 3u(4u + 1) 2 (a) (1 x)(1 + x) (b) (3 x)(3 + x) (c) (x 7)(x + 7)

(d) 1 12 x 1 +

12 x

(e) 2(4 x)(4 + x) 3 (a) (x + 6)(x 1) (b) (x + 2)(x 3) (c) (x + 3)(x + 7) 4 (a) 4x2 + 12x + 8 = 4(x2 + 3x + 2) = 4(x + 1)(x + 2) (b) 2x2 6x 8 = 2(x2 3x 4) = 2(x 4)(x + 1) (c) 6x2 2x 4 = 2(3x2 x 2) = 2(3x + 2)(x 1) (d) 3x2 + 18x + 24 = 3(x2 + 6x + 8) = 3(x + 2)(x + 4) (e) 2x2 2x 4 = 2(x2 x 2) = 2(x + 1)(x 2)

Latihan Bestari 2.2 1 (a) 3 + 6x2 = 3(1 2x2) (b) 5x2 + 25 = 5(x2 + 5) (c) 6 36x2 = 6(1 + 6x2) (d) x2 + 8x = x(x + 8) (e) 16x2 + 8x = 8x(2x + 1) 2 (a) 16 + x2 = x2 16 = (x 4)(x + 4) (b) 9x2 1 = (3x 1)(3x + 1) (c) 3x2 12 = 3(x2 4) = 3(x 2)(x + 2) 3 (a) x2 + 4x 12 = (x + 6)(x 2) (b) x2 8x + 16 = (x 4)(x 4) (c) 6x + x2 + 9 = x2 6x + 9 = (x 3)(x 3) 4 (a) 3x2 + 4x 4 = (3x 2)(x + 2) (b) 6x + 3x2 9 = 3x2 6x 9 = 3(x2 2x 3) = 3(x 3)(x + 1) (c) 2x2 6x + 4 = 2(x2 3x + 2) = 2(x 1)(x 2)

2.3 Persamaan Kuadratik 1 (a) Bukan (b) Ya (c) Ya (d) Bukan (e) Bukan 2 (a) 4x2 + x 8 = 0 (b) 9x2 + 5x 6 = 0 (c) 4x2 x + 1 = 0 (d) 14x2 + 21x + 12 = 0 (e) 30x2 61x + 28 = 0 3 (a) x2 3x 10 = 0 (b) 22r2 35 = 0

Latihan Bestari 2.3 1 (a) Ya (b) Bukan (c) Ya 2 (a) (4x 1)(x + 9) = 9 4x2 + 36x x 9 = 9 4x2 + 35x 18 = 0

(b)

1y

+

1y 1

= 1

y 1 + yy(y 1)

= 1

2y 1 = y2 y y2 y 2y + 1 = 0 y2 3y + 1 = 0 3 x 3 x = 625 x2 = 625 x2 625 = 0 4 Anggap lebarnya sebagai x, panjang = x + 5 Luas segi empat tepat = panjang 3 lebar 40 = (x + 5) 3 x 40 = x2 + 5x x2 + 5x 40 = 0

2.4 Punca-punca Persamaan Kuadratik 1 (a) Ya (b) Tidak 2 (a) 8x2 2x 10 = 0 2(4x2 x 5) = 0 2(4x 5)(x + 1) = 0

x = 1 @ 54

(b) 2x2 3x + 1 = 0 (2x 1)(x 1) = 0

x = 12

@ 1

(c) x2 4x + 4 = 0 (x 2)(x 2) = 0 x = 2 3 (a) 19.14 (b) (x 3) x = 28 x2 3x = 28 x2 3x 28 = 0 (x 7)(x + 4) = 0 x = 7

Latihan Bestari 2.4 1 Gantikan x = 3 ke sebelah kiri persamaan 2(3)2 5(3) 7 = 2(9) 15 7 = 18 15 7 = 4 Oleh kerana kiri kanan, x = 3 bukan punca

bagi persamaan itu.

2 Gantikan y = 13 ke sebelah kiri persamaan

(1 + 3y)(1 + 3y) = 1 + 6y + 9y2

= 1 + 6 13 + 9

13

2

= 1 + 2 + 9 19

= 1 + 2 + 1 = 4

Oleh kerana kiri kanan, y = 13 bukan

punca persamaan itu.

3 Faktor bagi 9 ialah 1, 3 dan 9.

x y2 + 6y + 9

3 (3)2 + 6(3) + 9 = 0

1 (1)2 + 6(1) + 9 = 4

1 (1)2 + 6(1) + 9 = 16

3 (3)2 + 6(3) + 9 = 36

Dengan itu, 3 adalah punca bagi x2 + 6x + 9. 4 (a) 2x2 7x + 5 = 0 (2x 5)(x 1) = 0

x = 52

@ 1

(b) 3x2 6x 9 = 0 3(x2 2x 3) = 0 3(x 3)(x + 1) = 0 x = 1 @ 3 (c) 12x2 9x 21 = 0 3(4x2 3x 7) = 0 3(4x 7)(x + 1) = 0

x = 74

@ 1

5 Januari = x Februari = x + 5 x(x + 5) = 150 x2 + 5x 150 = 0 (x + 15)(x 10) = 0 x = 15 @ 10 x = 15 tidak boleh menjadi jawapan kerana

mempunyai nilai negatif. Maka, nilai yang mungkin bagi x ialah 10.

SUDUT KBAT 1 (a) Formula yang boleh digunakan:

n(n + 1)2

= n2 + n2

Bentuk yang kelima:

52 + 52

= 15

(b) Bentuk yang ke-51:

512 + 512

= 1 326

2 x(4x) = 100 4x2 = 100 x = 5 Jumlah umur = 5 + 4(5) = 25

3 (x 1)2 + (x 2)2 = x

(x2 2x + 1 + x2 4x + 4) = x

2x2 6x + 5 2 = x2

2x2 6x + 5 x2 = 0 x2 6x + 5 = 0 (x 1)(x 5) = 0 x = 1 @ 5 Jawapan: 5 sahaja kerana x = 1 akan memberi panjang sisi yang mustahil.

PRAKTIS BAB 2Soalan Objektif 1 C 2 A 3 C 4 C 5 D 6 A 7 A 8 A 9 D 10 C11 A 12 B 13 B 14 C 15 D16 C 17 C

Anjakan Prima Math F4 Jaw 4th.indd 2 9/10/2017 3:50:28 PM

J3 Global Mediastreet Sdn. Bhd. (762284-U)

Soalan Subjektif

1 p2 8

4 = p + 1

p2 8 = 4p + 4 p2 4p 12 = 0 (p 6)(p + 2) = 0 p = 2 @ 6

2 6m 4(m 2) = 6m2 6m 4m + 8 = 6m2 6m2 2m 8 = 0 2(3m2 m 4) = 0 2(3m 4)(m + 1) = 0 m = 1 @ 4

3

3 (a) 5x2 + 10x

= 5x(x + 2) (b) x2 2xy (x y)2 = x2 2xy (x2 2xy + y2) = x2 2xy x2 + 2xy y2 = y2

4 (a) x2 3x + 2 = 0 (x 1)(x 2) = 0 x = 1 @ 2 (b) 2y2 7y 4 = 0 (2y + 1)(y 4) = 0

y = 12

@ 4

5 k2 = 5 8k4

4k2 = 5 8k 4k2 + 8k 5 = 0 (2k + 5)(2k 1) = 0

k = 52

@ 12

6 (2t 2)(t 2) 12 = 0 2t2 4t 2t + 4 12 = 0 2t2 6t 8 = 0 2(t2 3t 4) = 0 2(t 4)(t + 1) = 0 t = 1 @ 4 7 (5y 3)2 = 16y2 (5y 3)(5y 3) = 16y2 25y2 15y 15y + 9 = 16y2 9y2 30y + 9 = 0 3(3y2 10y + 3) = 0 3(3y 1)(y 3) = 0

y = 13

@ 3

8 (m 4)(m + 4)6

= m

m2 + 4m 4m 16 = 6m m2 6m 16 = 0 (m 8)(m + 2) = 0 m = 2 @ 8 9 Luas = (x + 2)(x 3) 6 = x2 3x + 2x 6 6 = x2 x 6 0 = x2 x 12 0 = (x 4)(x + 3) x = 3 @ 4; x = 4

10 Luas = 12

(2x 1)(x + 3)

152

= 12

(2x2 + 6x x 3)

152

= 12

(2x2 + 5x 3)

2(15) = 2(2x2 + 5x 3) 30 = 4x2 + 10x 6 0 = 4x2 + 10x 36 0 = 2(2x2 + 5x 18) 0 = 2(2x + 9)(x 2)

x = 92

@ 2; x = 2

Tapak = 2x 1 = 2(2) 1 = 4 1 = 3 cm

BAB 3 Set 3.1 Set 1 (a) Set nombor genap dari 10 hingga 20.

{10, 12, 14, 16, 18, 20} (b) Set lima nombor kuasa dua sempurna

pertama {1, 4, 9, 16, 25} 2 (a) Q = {24, 27, 30, 33, 36, 39}; n(Q) = 6 (b) R = {23, 29, 31}; n(R) = 3 (c) S = {33, 34, 35, 36, 37, 38, 39}; n(S) = 7 (d) T = {4, 8, 12, 16, 20, 24, 28}; n(T) = 7 (e) U = {2, 3, 5}; n(U) = 3 3 (a) (b) (c) (d) (e) 4 (a)

J1

3

9

(b)

Q

54 60

66 72 78

(c)

R

2123 25

27 29

5 (a) 5 (b) 7 (c) 3 6 (a) K f (b) L f (c) M = f 7 (a) Ya (b) Tidak (c) Ya

Latihan Bestari 3.1 1 (a) Set lima nombor perdana yang pertama. (b) Set lima nombor genap yang pertama. 2 (a) K = {21, 23, 25, 27, 29} (b) L = {1, 4, 9, 16, 25, 36, 49} 3 (a) Benar (b) Palsu 4 (a)

13T

15 17

19 21 23

25 27 29

31 33

(b)

U

A I

5 (a) Y = {a, e, h, k, s, t, y} (b) 7 6 (a) F = f (b) G f 7 (a) Serupa (b) Tak serupa 8 (a) h = 4 (b) u = 8

3.2 Subset, Set Semesta dan Set Pelengkap 1 (a) P Q (b) P Q (c) P Q (d) P Q (e) P Q 2 (a)

ML

j

k

lm

a bc de f

(b)

P Q

15

9 6

8

103

2

4 7

(c)

P0

2

4

1 3

5

(d)

Q

(e)

R

1

4 6

5

2 3

7

3 (a) { }, {3}, {4}, {5}, {3, 4}, {3, 5}, {4, 5}, {3, 4, 5}

(b) { }, {w}, {x}, {w, x} 4 (a) Q9 = {5, 7, 8} (b) Q9 = {2, 4, 6, 8, 10, 12, 14, 16, 18} (c) Q9 = {20, 30, 50}

Latihan Bestari 3.2 1 (a) (b) (c) (d)

Anjakan Prima Math F4 Jaw 4th.indd 3 9/10/2017 3:50:29 PM

J4 Global Mediastreet Sdn. Bhd. (762284-U)

2 (a)

P

Qw

z

xy

(b)

R

S

3 9 15

21

6

18

12

24

(c)

T

U31

9 2

11

13

57

3 (a) bilangan subset = 4 { }, {3}, {4}, {3, 4} (b) bilangan subset = 8 { }, {a}, {b}, {c}, {a, b},

{a, c}, {b, c}, {a, b, c} (c) bilangan subset = 2 { }, {s}

4 (a)

6

10

14

18

22 26

4 8

12 16 20

24 28

Q

(b)

T1 7

9

2

8

4 63

5

5 (a) R9 = {10, 20, 30, 40} (b) R9 = {10, 15, 20, 25, 30, 35, 40, 45}

3.3 Operasi ke atas Set 1 (a) {4, 5} (b) {4, 5} 2 (a)

Q

P

(b)

R

Q

(c)

R

P Q

3 (a) {1, 2, 3, 5, 6, 7, 9, 10} (b) {7, 13, 17} 4 (a) {11, 13, 16, 17, 19} (b) {11, 12, 13, 14, 16, 17, 18, 19} 5 (a)

ST

(b)

US

T

(c)

S

TU

6 (a) {1, 3, 5, 9, 11} (b) {15} 7 (a) {66, 88} (b) {a, c, e, g, i, k} 8 (a)

R

P Q

(b)

Q

R

P

(c)

R

QP

9 (a) W (X Y) (b) W9 Y X (c) W (Y9 X)

Latihan Bestari 3.3 1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} P = {1, 3, 5, 7, 9} Q = {1, 2, 4} R = {1, 4, 9} (a) P R = {1, 9} (b) (Q R)9 = {2, 3, 5, 6, 7, 8, 9, 10} P (Q R)9 = {3, 5, 7, 9} 2 (a) P Q = f (b) Q R = Q (c) P Q R = f 3 = {T, R, A, N, S, F, O, M, I} S = {A, O, I} T = {F, O, R, M, A, T} U = {N, A, T, I, O} (a) S U = {N, A, T, I, O} (b) (S T U) = {F, O, R, M, A, T, I, N} (S T U)9 = {S} 4 (a) P Q R

P Q

R

(b) P R Q9

P

Q

R

5

BF

575 40

= 5

SUDUT KBAT 1 A 2 (a)

Bola sepak

10 6

12

7

Catur

(b) 12

PRAKTIS BAB 3Soalan Objektif 1 D 2 A 3 C 4 A 5 B 6 A 7 D 8 A 9 A 10 D11 C 12 D 13 A 14 C

Soalan Subjektif 1 (a) Q f Q = {2, 3, 5, 7, 11} n(Q) = 5 (b) Q = f (c) Q = f 2 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} P = {3, 6, 9, 12} Q = {1, 3} R = {1, 2, 5, 10} (a) (i) P9 = {1, 2, 4, 5, 7, 8, 10, 11} (ii) Q9 = {2, 4, 5, 6, 7, 8, 9, 10, 11, 12} (b) (i) n(R9) = 8 (ii) n(P Q)9 = 11 3 (a) 3 (b) 8 4 (a) P Q R (b) P (Q9 R) 5 (a)

YS

X

(b)

S

Y

X

6 (a) f (b) K (c) H 7 (a)

RQ

P

(b)

R

P Q

8

PR

Q

9

P QR

Anjakan Prima Math F4 Jaw 4th.indd 4 9/10/2017 3:50:31 PM

J5 Global Mediastreet Sdn. Bhd. (762284-U)

BAB 4 Penaakulan Matematik 4.1 Pernyataan 1 (a) Ya, palsu (b) Bukan, palsu (c) Ya, benar 2 (a) , (b) . (c) . (d) . 3 (a) Pernyataan benar: 3 + 6 . 8 Pernyataan palsu: 3 + 8 , 6 (b) Pernyataan benar: 8 4 2 = 4 Pernyataan palsu: 4 4 2 = 8 (c) Pernyataan benar: 1 3 5 , 10 Pernyataan palsu: 1 3 10 . 5

Latihan Bestari 4.1 1 (a) Bukan pernyataan (b) Pernyataan (c) Pernyataan (d) Pernyataan (e) Bukan pernyataan (f) Pernyataan 2 (a) , (b) . 3 (a) Pernyataan benar: 2 + (2) , 5 Pernyataan palsu: 10 2 . 5 (b) Pernyataan benar: 90 34 , 67 Pernyataan palsu: 90 34 . 67 (c) Pernyataan benar: 3 + (3) = 0 Pernyataan palsu: 7 3 . 5

4.2 Pengkuantiti Semua dan Sebilangan 1 (a) Semua (b) Sebilangan (c) Sebilangan 2 (a) Palsu (b) Palsu (c) Benar 3 (a) Ya. Semua formula bagi luas sebarang

segi empat tepat ialah panjang lebar adalah benar.

(b) Tidak. Semua sekolah mempunyai cikgu lelaki dan perempuan adalah tidak benar. 4 (a) Sebilangan nombor perdana adalah

gandaan 3. (b) Sebilangan kereta Proton Saga berwarna hijau. (c) Semua heksagon mempunyai 6 sisi.

Latihan Bestari 4.2 1 (a) Semua pentagon mempunyai 5 sisi. (b) Sebilangan arnab berwarna putih. 2 (a) Benar (b) Palsu (c) Palsu 3 (a) Ya (b) Tidak 4 (a) Sebilangan televisyen dibuat dalam Malaysia. (b) Semua rombus adalah sisi empat.

4.3 Operasi ke atas Pernyataan 1 (a) 9 bukan nombor perdana. (benar) (b) 5 darab m tidak sama dengan m5. (benar) (c) Bukan semua nombor genap boleh dibahagi dengan 2. (palsu)

2 (a) (i) {9} ialah subset bagi nombor ganjil. (ii) {9, 21} ialah subset bagi nombor

ganjil. (b) (i) 3 ialah nombor perdana. (ii) 3 ialah nombor ganjil. (c) (i) 1

5 ialah pecahan.

(ii) 1

5 = 0.2

3 (a) 81 boleh dibahagi dengan 9 dan 3. (b) 0 . (3 + 1) dan 9. (c) Kuda dan lembu ada 4 kaki. 4 (a) (i) Semua integer positif lebih

daripada 1. (ii) Semua integer negatif kurang

daripada 1. (b) (i) Pentagon ada 5 sisi. (ii) Heptagon ada 7 sisi. (c) (i) 10 + 5 , 1 (ii) 1 , 10 5 5 (a) 10 atau 8 adalah lebih daripada 4. (b) 4 ialah gandaan 2 atau 4. (c) Dekagon atau segi tiga ialah poligon. 6 (a) Benar (b) Benar (c) Palsu 7 (a) Palsu (b) Benar (c) Palsu

Latihan Bestari 4.3 1 (a) Heksagon tidak mempunyai 7 sisi. (benar) (b) Bukan semua pecahan mempunyai nilai

kurang daripada 1. (benar) (c) Singa bukan haiwan liar. (palsu) (d) Kuching bukan ibu negeri Sarawak.

(palsu) 2 (a) Kaki manusia digunakan untuk berjalan. Kaki manusia digunakan untuk berlari. (b) x = 1 ialah punca bagi persamaan x2 3x + 2 = 0. x = 2 ialah punca bagi persamaan x2 3x + 2 = 0. 3 (a) Dia hendak menyanyi atau menulis. (benar) (b) 1 . 2 dan (2 + (8)). (benar) (c) 2 lebih daripada 10 atau 20. (benar) 4 (a) Benar (b) Palsu (c) (i) Benar (ii) Benar

4.4 Implikasi 1 (a) Antejadian : x = 1 atau x = 2 Akibat : x2 + x 2 = 0 (b) Antejadian : 3 , 7 Akibat : 32 , 72 (c) Antejadian : y = 9

Akibat : y = 3 2 (a) Implikasi 1 : Jika 32 , 42, maka 3 , 4 Implikasi 2 : Jika 3 , 4, maka 32 , 42 (b) Implikasi 1 : Jika m n . 0, maka m . n Implikasi 2 : Jika m . n, maka m n . 0 (c) Implikasi 1 : Jika n , 7, maka 4n , 28 Implikasi 2 : Jika 4n , 28, maka n , 7 3 (a) Jika x ialah gandaan 2, maka x ialah nombor genap

(b) Jika r = 5, maka 5r = r2. 4 (a) 2 + x = 0 jika dan hanya jika x = 2. (b) r2 = 36 jika dan hanya jika r = 6. 5 (a) Jika p , 3, maka p , 0. (palsu) (b) Jika 3x 5 = 11, maka x = 2. (benar)

Latihan Bestari 4.4 1 (a) Antejadian : Panjang sebuah segi empat

sama ialah 2 cm. Akibat : Perimeternya ialah 8 cm. (b) Antejadian : 4 . 2 Akibat : 42 22 . 0 (c) Antejadian : x = 0 Akibat : kos x = 1 2 (a) Implikasi 1 : Jika U . V, maka U , V Implikasi 2 : Jika U , V, maka U . V (b) Implikasi 1 : Jika dia boleh menyambung pengajian-

nya, maka dia mempunyai wang. Implikasi 2 : Jika dia mempunyai wang,

maka dia boleh menyambung pengajian-

nya. 3 (a) Jika x , y, maka x y , 0

(b) Jika ab . 1, maka a . b

4 (a) x(x 1) = 0 jika dan hanya jika x = 0 atau x = 1.

(b) 2 3 3 = 6 jika dan hanya jika 62 = 3.

5 (a) Jika x , 10, maka x . 12. (palsu) (b) Jika y2 = 81, maka y = 9. (palsu) (c) Jika set P = set Q, maka

P Q = P Q. (benar) (d) Jika X Y, maka X Y = Y. (benar)

4.5 Hujah

1 (a) Premis 1 : Semua burung mempunyai 2 sayap.

Premis 2 : Burung pipit mempunyai 2 sayap.

Kesimpulan : Burung pipit ialah sejenis burung.

(b) Premis 1 : Semua sekolah mempunyai pelajar dan guru.

Premis 2 : Sekolah Menengah Sri Permai ialah sebuah sekolah.

Kesimpulan : Sekolah Menengah Sri Permai mempunyai pelajar dan guru.

(c) Premis 1 : Semua segi tiga mempunyai 3 bucu. Premis 2 : WXY ialah sebuah segi tiga. Kesimpulan : WXY mempunyai 3 bucu. 2 (a) Motosikal Honda ada dua roda. (b) x 5. 3 (a) Jika n ialah nombor genap, maka ia boleh

dibahagi dengan 2. (b) Pokok kelapa ialah sejenis pokok.

Latihan Bestari 4.5 1 Premis 1 : Semua ikan boleh berenang. Premis 2 : Ikan yu ialah sejenis ikan. Kesimpulan : Ikan yu boleh berenang.

Anjakan Prima Math F4 Jaw 4th.indd 5 9/10/2017 3:50:31 PM

J6 Global Mediastreet Sdn. Bhd. (762284-U)

2 (a) Jika x = 2, maka x2 = 4. x 2. Maka, x2 4. (b) Jika 18 boleh dibahagi dengan p, maka p

ialah faktor bagi 18. p bukan faktor bagi 18. Maka, 18 tidak boleh dibahagi dengan p.

3 (a) Jika jejari sebuah bulatan ialah r, maka luas bulatan itu ialah r2.

(b) P Q Q.

4.6 Deduksi dan Aruhan 1 (a) Aruhan (b) Deduksi (c) Aruhan 2 (a) Maka, hasil tambah sudut pedalaman

ABCDE ialah 540. (b) Maka, unta melahirkan anak.

3 (a) 12 [(n + 1)], di mana n = 1, 2, 3, 4,

(b) 2n2 + 5, di mana n = 1, 2, 3, 4, (c) 2n2 1, di mana n = 1, 2, 3, 4, (d) 5 2n, di mana n = 1, 2, 3, 4,

Latihan Bestari 4.6 1 (a) Deduksi (b) Aruhan 2 2 + n3, di mana n = 1, 2, 3, 4,

SUDUT KBAT 1 (a) 2n + 1, n = 1, 2, 3, 4, (b) 2(40) + 1 = 81

PRAKTIS BAB 4Soalan Subjektif 1 (a) 3 + 5 . 7 (b) {2, 3} {2, 3, 4} 2 (a) Benar (b) Palsu 3 (a) Benar (b) Palsu 4 (a) Semua integer positif adalah lebih besar

daripada integer negatif. (benar) (b) Semua harimau bintang boleh memanjat.

(benar) 5 (a) Palsu (b) Benar (c) Palsu (d) Benar 6 (a) Maka x = 150 bukan sudut tirus. (b) Maka x = 20 ialah sudut tirus. 7 7 + 4n, di mana n = 1, 2, 3, 4, 8 (a) Setiap sudut pedalaman segi tiga ABC

bukan 60. (b) 6 ialah faktor bagi 12.

BAB 5 Garis Lurus 5.1 Kecerunan Garis Lurus 1 (a) Jarak mencancang = 4 Jarak mengufuk = 6 (b) Jarak mencancang = 0 Jarak mengufuk = 7

Latihan Bestari 5.1 1 (a) Jarak mencancang = 3 Jarak mengufuk = 4 (b) Jarak mencancang = 3 Jarak mengufuk = 0 (c) Jarak mencancang = 2 Jarak mengufuk = 4

(d) Jarak mencancang = 3 Jarak mengufuk = 1

2 (a) 43

(c) 24

= 12

(b) 32

(d) 30

=

3 8Jarak mengufuk

= 4

Jarak mengufuk = 8

4 = 2

5.2 Kecerunan Garis Lurus dalam Sistem Koordinat Cartes

1 (a) 6 24 0

= 44

= 1

(b) 5 204 1

= 255

= 5

(c) 8 26 (3)

= 69

= 23

(d) 6 23 1

= 84

= 2

(e) 2 112 5

= 93

= 3

2 (a) 4 (1)2 (3)

= 55

= 1

(b) 1 (2)3 2

= 35

= 35

(c) 4 26 2

= 24

= 12

(d) 5 00 4

= 54

(e) 6 22 (10)

= 48

= 12

3 (a) 3 1

2 p = 2

4 = 4 2p 2p = 8 p = 4

(b) 8 p2 6

= 3 8 p = 12 p = 4

(c) p 0 = 1 1 (2) 2 2p = 3 p = 3 2

Latihan Bestari 5.2 1 (a) P(2, 4), Q(4, 2)

Kecerunan PQ = 2 44 (2)

= 66

= 1

(b) R(6, 1), S(2, 3)

Kecerunan RS = 3 (1)2 (6)

= 48

= 12

2 (a) (1, 3) dan (2, 8)

Kecerunan = 8 32 1 = 111 = 11

(b) (2, 5) dan (1, 7)

Kecerunan = 7 51 2 = 2

1 = 2

(c) (3, 2) dan (2, 4)

Kecerunan = 4 22 3 = 2

1 = 2

(d) (2, 1) dan (0, 6)

Kecerunan = 6 10 (2)

= 52

= 52

3 (a) mOP = 3 03 0

= 1

(b) mPQ = 3 03 6 =

33 = 1

5.3 Pintasan

1 (a) Pintasan-x = 5, Pintasan-y = 3 (b) Pintasan-x = 5, Pintasan-y = 4

2 (a) 33

= 1 (b) 24

= 12

3 (a) 6x

= 3 (b) 3x = 12

6 = 3x 6 = x x = 2 x = 6

4 (a) y2 = 34 (b)

y3

= 4

4y = 6 y = 12

y = 32 y = 12

Latihan Bestari 5.3 1 No. Titik R Titik S Pintasan-x Pintasan-y Kecerunan

(a) (0, 3) (1, 0) 1 3 3

(b) (3, 0) (0, 6) 3 6 2

(c) (0, 5) (10, 0) 10 5 12

2 (a) 3 = Pintasan-y2

Pintasan-y = 6

(b) 12

= Pintasan-y4 Pintasan-y = 2

(c) 25

= 10Pintasan-x

Pintasan-x = 10 3 52

= 25

5.4 Persamaan Garis Lurus

1 (a)

x 0

32

y 3 0

y

x0

3

32

(b)

x 0 3

y 9 0

y

x0

9

3

2 (a) Tidak (b) Ya (c) Ya

3 (a) y = 14 x + 34

(b) y = 23 x 6

4 (a) 2x + 3y = 1 (b) 4y = 8x 4 y = 2x 1 m = 2, c = 1

3y = 2x + 1

y = 23 x + 13

m = 23 ; c = 13

Anjakan Prima Math F4 Jaw 4th.indd 6 9/10/2017 3:50:31 PM

J7 Global Mediastreet Sdn. Bhd. (762284-U)

5 (a) 1 = 3(4) + c (b) 4 = (8) + c

c = 4 6 c = 2 y = x 2

3 4

3 4

c = 1 + 12 c = 13 y = 3x + 13

6 (a) m = 4 12 3 (b) m = = 36 =

12

3 = 12

(1) + c

c = 3 12

= 52

y = 12

x + 52

3 01 5

= 31 = 3 4 = 3(2) + c c = 4 + 6 = 10 y = 3x + 10

7 (a) y = 12 x + 2

y = x 1 Gantikan ke dalam

x 1 = 12 x + 2

2x 2 = x + 4 3x = 6 x = 2 Gantikan x = 2 ke dalam y = 2 1 = 1 Titik persilangan ialah (2, 1) (b) y = x + 1 2y = x + 4 Gantikan ke dalam 2(x + 1) = x + 4 2x + 2 = x + 4 x = 2 Gantikan x = 2 ke dalam y = 2 + 1 = 3 Titik persilangan ialah (2, 3) (c) y = 3x + 2 2y = 4x + 8 Gantikan ke dalam 2(3x + 2) = 4x + 8 6x + 4 = 4x + 8 10x = 4

x = 25

Gantikan x = 25 ke dalam

y = 3 25 + 2

y = 6 5 + 2

y = 3 15

Titik persilangan ialah 25 , 3 15

(d) 2y = 3x 5 4y = 3x + 5 2y = 10 y = 5 Gantikan y = 5 ke dalam 2(5) = 3x 5 3x = 10 + 5 x = 5 Titik persilangan ialah (5, 5).

Latihan Bestari 5.4 1 (a) y = 3x

x 0 1

y 0 3

y

x

21

3

0 1

(b) y = x2

+ 2

x 0 2

y 2 1

y

x

21

0 21 3

(c) y = 3x + 2

x 0 1

y 2 1

y

x

21

10 21 3

2 (a) y = 2x + 3; (0, 3) Gantikan x = 0 dan y = 3 ke dalam y = 2x + 3 KIRI = y = 3 KANAN = 2(0) + 3 = 3 Oleh kerana KIRI = KANAN, titik (0, 3)

terletak di atas garis lurus y = 2x + 3 (b) y = 2x + 3; (4, 3) Gantikan x = 4 dan y = 3 ke dalam y = 2x + 3 KIRI = y = 3 KANAN = 2(4) + 3 = 5 Oleh kerana KIRI KANAN, titik (4, 3)

tidak terletak di atas garis lurus y = 2x + 3 (c) y = 2x + 3; (2, 4) Gantikan x = 2 dan y = 4 ke dalam y = 2x + 3 KIRI = y = 4 KANAN = 2(2) + 3 = 1 Oleh kerana KIRI KANAN, titik (2, 4)

tidak terletak di atas garis lurus y = 2x + 3 3 (a) m = 1, c = 3 y = 1(x) + 3 y = x + 3

(b) m = 12 , c = 2

y = 12 (x) + 2

y = 12 x + 2

4 (a) 2y = 4x + 3

y = 2x + 32

m = 2, c = 32 (b) 2x y = 1 y = 2x 1 m = 2, c = 1

(c) y = 2x + 9 m = 2, c = 9

5 (a) Selari dengan paksi-x bermaksud garis lurus itu terletak pada koordinat-y titik y = 1

(b) Selari dengan paksi-y bermaksud garis lurus itu terletak pada koordinat-x titik x = 3

6 (a) m = 3, (1, 2) (b) m = 1, (3, 0) 0 = 1(3) + c c = 3 y = x + 3

2 = 3(1) + c c = 2 3 = 1 y = 3x 1

7 (4, 1) dan (1, 3)

m = 3 (1)1 4

= 43

y = 43 x + c

3 = 43 (1) + c

c = 3 + 43

= 133

y = 43 x +

133

8 (a) y = x2

y + x = 3

y = x + 3 Gantikan ke dalam

x + 3 = x2

2x + 6 = x

3x = 6 x = 2 Gantikan x = 2 ke dalam y + 2 = 3 y = 1 Titik persilangan ialah (2, 1). (b) y = x + 2 y 4x + 4 = 0

Gantikan ke dalam

x + 2 4x + 4 = 0 3x + 6 = 0 3x = 6 x = 2 Gantikan x = 2 ke dalam y 4(2) + 4 = 0 y = 8 4 = 4 Titik persilangan ialah (2, 4).

5.5 Garis Selari 1 (a) Tidak (b) Ya (c) Tidak

2 (a) m = 1 3y = px 8

y = p3 x

83

1 = p3

p = 3

(b) m =

2y = px + 7

y = x + 72 =

4p = 6 p =

34

34

p2p2

32

Anjakan Prima Math F4 Jaw 4th.indd 7 9/10/2017 3:50:32 PM

J8 Global Mediastreet Sdn. Bhd. (762284-U)

(c) m = 3 p = 3 3 (a) m = 3 2 = 3(2) + c c = 2 + 6 c = 4 y = 3x + 4 (c) m = 3

2 6 = 3

2(4) + c

c = 0 y = 3

2x

4 (a) m = 12

2 = 12 (0) + c

c = 2 y = 12 x + 2

(b) m = 1 4 = 1(0) + c c = 4 y = x + 4

Latihan Bestari 5.5 1 (a) 2y = x 10

y = 12 x 5

m = 12 5y = tx + 6

y = tx5 65

t5 = 12

(b) y = 2x + 1 m = 2 2y = tx + 1

y = x +

= 2

t = 4

12

t2t

2

2t = 5 t = 52

2 (a) M(3, 2); 4y = 12x 9

y = 3x 94

m = 3

2 = 3(3) + c c = 2 9 = 11 y = 3x 11 (b) M(1, 2); 4x 6y = 1 6y = 4x 1 y = 23 x

16

m = 23

2 = 23 (1) + c

6 = 2 + 3c

3c = 8

c = 83

y = 23 x + 83

3 (a) R(0, 0), S(5, 3) m = 3 05 0 =

35

(b) 3 = 35 (5) + c

3 = 3 + c c = 0 y = 35 x

(c) P(0, 3), m = 35

3 = 35 (0) + c

c = 3

y = 35 x + 3

0 = 35 x + 3

35 x = 3

3x = 15 x = 5 Pintasan-x = 5

SUDUT KBAT 1 (a) y = 70x y = 30x + 80 (b) Hari ke-2. Bayaran sewa = RM40 (c) Syarikat Abu, RM290

PRAKTIS BAB 5Soalan Objektif 1 D 2 D 3 B 4 D 5 A 6 A 7 C 8 C 9 C

Soalan Subjektif 1 (a) O(0, 0), T(2, 2) Kecerunan OT = 2 02 0

= 22

= 1 (b) T(2, 2), R(6, 0) Kecerunan PR = 0 26 2

= 24

= 12

2 (2, 6) dan (3, 4)

m = 4 63 2

= 25

= 25

6 = 25 (2) + c

c = 6 45

= 26

5

y = 2

5x + 26

5 3 (1, 2); 2x + 3y + 2 = 0 3y = 2x 2

y = 23

x 23

m = 23

2 = 23 (1) + c

c = 2 + 23 = 83

y = 23 x +

83

4 (a) P(2, 0), T(0, 6)

m = 6 00 (2)

= 62 = 3

(b) PT = 62 + (2)2

= 36 + 4

= 40 = 6.32 k 0 = 6.32 k = 6.32

5 (a) m = 34 , pintasan-x = 6

34 = pintasan-y

6

pintasan-y = 6 3 34

= 92

(b) m = 34 , c = 2

34 = 2

pintasan-x

pintasan-x = 4 3 23

= 83 6 (a) R(4, 0); y = 2x 4 m = 2 0 = 2(4) + c c = 8 y = 2x 8 (b) R(2, 2); y = 3x + 1 m = 3 2 = 3(2) + c c = 2 + 6 = 4 y = 3x + 4

7 (a) 8x + 6y = 48 pintasan-y, x = 0 6y = 48 y = 8 (b) 8x + 6y = 48 pintasan-x, y = 0 8x = 48 x = 6 pintasan-x = 6 (c) 6y = 8x + 48 y = 8

6x + 8

m = 86

= 4

3

8 (a) y = 2x + 1

4x + y = 7 Gantikan ke dalam 4x + (2x + 1) = 7 4x + 2x = 6 6x = 6 x = 1 Gantikan x ke dalam 4(1) + y = 7 y = 7 4 = 3 Titik persilangan ialah (1, 3)

9 (a) m = 35

y = 3

5x + c

0 = 35

(4) + c

c = 125

y = 35 x +

125

(b) m = 3 4 = 3(0) + c c = 4 y = 3x 4

Anjakan Prima Math F4 Jaw 4th.indd 8 9/10/2017 3:50:32 PM

J9 Global Mediastreet Sdn. Bhd. (762284-U)

(b) R(x, y), O(0, 0), m = 35

y 0x 0

= 35

R(5, 3)

y = 3

5x + c

3 = 35

(5) + c

3 = 3 + c c = 0

y = 35

x

(c) R(5, 3), S(10, 0)

m =

3 0

5 10

= 35

P(h, 8), S(10, 0)

m = 3

5

0 = 35

(10) + c

c = 6

y = 35

x + 6

(d) P(h, 8), S(10, 0), m = 35

m =

0 8

10 h = 3

5 40 = 30 + 3h 3h = 10

h = 103

BAB 6 Statistik 6.1 Selang Kelas 1 (a)

Panjang (cm)85 8990 9495 99

100 104

(b)

Jisim (kg)30 3435 3940 44

2

Had Had Sempadan Sempadan Saiz bawah atas bawah atas kelas

45 49 44.5 49.5 5

50 54 49.5 54.5 5

51 60 50.5 60.5 10

1.1 1.5 1.05 1.55 0.5

3.0 3.9 2.95 3.95 1.0

5.0 5.4 4.95 5.45 0.5

3 (a) Saiz selang kelas = 10

Selang Kekerapan kelas

11 20 2 21 30 7 31 40 6 41 50 4 51 60 3 61 70 8 71 80 4 81 90 4 91 100 2

(b) Saiz selang kelas = 11

Selang Kekerapan kelas

11 21 3 22 32 11 33 43 9 44 54 2 55 65 1 66 76 4

Latihan Bestari 6.1 1

Jejari Had Had Sempadan Sempadan Saiz (cm) bawah atas bawah atas kelas

5 9 5 9 4.5 9.5 5

10 14 10 14 9.5 14.5 5

15 19 15 19 14.5 19.5 5

2

Selang Kekerapan kelas

4.2 4.6 1 4.7 5.1 0 5.2 5.6 1 5.7 6.1 4 6.2 6.6 7 6.7 7.1 12 7.2 7.6 6 7.7 8.1 8 8.2 8.6 4 8.7 9.1 7

3 (a) 490 (b) 489 (c) 479.5 (d) 10

6.2 Mod dan Min bagi Data Terkumpul 1 (a) (21 25) cm (b) (30 34) g 2 (a)

Titik tengah525762

(b)

Titik tengah30.540.550.5

3 (a)

Umur Kekerapan Titik tengah Titik tengah 3 (tahun) Kekerapan

14 16 16 15 240

17 19 11 18 198

20 22 15 21 315

23 25 22 24 528

26 28 10 27 270

29 31 16 30 480

Jumlah 90 Jumlah 2 031

Min = 2 03190

= 22.6

(b)

Masa Kekerapan Titik Titik tengah 3 (minit) tengah Kekerapan

10 14 6 12 72

15 19 7 17 119

20 24 7 22 154

25 29 16 27 432

30 34 3 32 96

35 39 1 37 37

Jumlah 40 Jumlah 910

Min = 91040

= 22.75

Latihan Bestari 6.2 1 (a) 21 30 (b) 150 159 2 (a)

Titik tengah23283338

2 (b)

Titik tengah12172227

3 (a) Min = (17 3 5) + (22 3 4) + (27 3 22)31

= 24.74

(b) Min = (3 3 6) + (8 3 3) + (13 3 7)16

= 8.31

Anjakan Prima Math F4 Jaw 4th.indd 9 9/10/2017 3:50:33 PM

J10 Global Mediastreet Sdn. Bhd. (762284-U)

6.3 Histogram 1 (a)

Sempadan Sempadan bawah atas 40.5 45.5 45.5 50.5 50.5 55.5 55.5 60.5 60.5 65.5

1

Markah

Kek

erap

an

2

3

4

5

6

040.5 45.5 50.5 55.5 60.5 65.5

(b)

Sempadan Sempadan bawah atas 1.5 6.5 6.5 11.5 11.5 16.5 16.5 21.5 21.5 26.5

1

Masa (minit)

Kek

erap

an

2

3

4

5

6

01.5 6.5 11.5 16.5 21.5 26.5

2 (a) (i) 3

(ii) Min = (6 3 4) + (9 3 2) + (12 3 8) + (15 3 10) + (18 3 6)

30 = 13.2

(b) (i) (155 159) cm (ii) 40

50 3 100% = 80%

Latihan Bestari 6.3 1

Panjang (cm)

Kek

erap

an

1

2

3

4

5

6

7

8

9

029.5 39.5 49.5 59.5 69.5 79.5 89.5

6.4 Poligon Kekerapan 1 (a)

2

Umur (tahun)

Kek

erap

an

4

6

8

10

011.5 15.5 19.5 23.5 27.5 31.5 35.5

(b)

1

Tinggi (cm)

Kek

erap

an

2

3

4

5

0120.5 131.5 142.5 153.5 164.5 175.5

(c)

5

Berat (kg)

Kek

erap

an

10

15

20

25

015.5 20.5 25.5 30.5 35.5 40.5 45.5

Jisim (kg)

(d)

20

Skor

Kek

erap

an

40

60

80

100

026.5 30.5 34.5 38.5 42.5 46.5 50.5

2 (a)

1

Skor

Kek

erap

an

2

3

4

5

6

040.5 50.5 60.5 70.5 80.5 90.5100.5

(b)

1

Markah

Kek

erap

an

2

3

4

5

6

05.5 10.5 15.5 20.5 25.5 30.5 35.5 40.5

Latihan Bestari 6.4 1 (a) (46 50) kg (b) 6

6.5 Kekerapan Longgokan 1 (a)

Jisim (g) 41 50 51 60 61 70 71 80 Kekerapan 3 4 3 8

Sempadan 50.5 60.5 70.5 80.5 atas

Kekerapan 3 7 10 18 longgokan

(b)

Jarak (km) 11 15 16 20 21 25 26 30 Kekerapan 1 6 6 2

Sempadan 15.5 20.5 25.5 30.5 atas

Kekerapan 1 7 13 15 longgokan

2 Masa 11 20 21 30 31 40 41 50 51 60 (minit)

Kekerapan 5 7 8 7 3

Sempadan 20.5 30.5 40.5 50.5 60.5 atas

Kekerapan 5 12 20 27 30 longgokan

Masa (minit)

Kek

erap

an lo

nggo

kan

5

10

15

20

25

30

010.5 20.5 30.5 40.5 50.5 60.5

Anjakan Prima Math F4 Jaw 4th.indd 10 9/10/2017 3:50:34 PM

J11 Global Mediastreet Sdn. Bhd. (762284-U)

3 Skor 10 19 20 29 30 39 40 49 50 59 Kekerapan 3 9 6 4 3

Sempadan 19.5 29.5 39.5 49.5 59.5 atas

Kekerapan 3 12 18 22 25 longgokan

Skor

Kek

erap

an lo

nggo

kan

5

10

15

20

25

09.5 19.5 29.5 39.5 49.5 59.5

Latihan Bestari 6.5 1

Skor Kekerapan Sempadan atasKekerapan longgokan

50 59 4 59.5 460 69 6 69.5 1070 79 17 79.5 2780 89 8 89.5 3590 99 5 99.5 40

2 Harga (RM) Kekerapan

Sempadan atas

Kekerapan longgokan

41 50 8 50.5 851 60 13 60.5 2161 70 25 70.5 4671 80 13 80.5 5981 90 7 90.5 66

91 100 4 100.5 70

Harga (RM)

Kek

erap

an lo

nggo

kan

10

20

30

40

50

60

70

040.5 50.5 60.5 70.5 80.5 90.5 100.5

6.6 Sukatan Serakan 1 (a) 30 (b) 30 (c) 19.1 2 (a) Median = 46 jam Kuartil pertama = 43 jam Kuartil ketiga = 55 jam Julat antara kuartil = 12 jam (b) Median = 55 Kuartil pertama = 46 Kuartil ketiga = 62 Julat antara kuartil = 16 (c) Median = 17.5 tahun Kuartil pertama = 13 tahun Kuartil ketiga = 23.5 tahun Julat antara kuartil = 10.5 tahun

3 (a) (i) 60 (ii) 14 (b) (i) 25 (ii) 17.5 (iii) 5 (c) (i) 60 kg (ii) 67 kg

Latihan Bestari 6.6 1 (a) Julat = 19 3 = 16

(b) Julat = 25 + 292 10 + 14

2 = 27 12 = 15

2 (a) Median = 30.5 (b) Kuartil pertama = 25.5 Kuartil ketiga = 36.5 Julat antara kuartil = 36.5 25.5 = 11

SUDUT KBAT

1 (b) (i) min =

(7 12) + (12 20) + (17 20) + (22 33) + (27 + 15)

100 = 17.95

(ii) Peratusan = 15100 3 100 = 15% (b) 15 RM10 = RM150

PRAKTIS BAB 6Soalan Objektif 1 A 2 C 3 D 4 B 5 D 6 A 7 C 8 B 9 A 10 C11 C 12 C

Soalan Subjektif 1 (a)

Selang Kekerapan kelas

140 149 5 150 159 7 160 169 5 170 179 2 180 189 1

(b) (i) 10 (ii) 150 159 2 (a)

Skor

Kek

erap

an

1

2

3

4

5

6

0 0.5 5.5 10.5 15.5 20.5 25.5 30.5

(b) (i) 21 25 (ii) Skor min

=

(3 3 2) + (8 3 4) + (13 3 3) + (18 3 5) + (23 3 6) + (28 3 5)

25

= 44525

= 17.8

3 (a) 32 (b) (61 65) kg (c) Jisim min

=

(48 3 5) + (53 3 8) + (58 3 6) + (63 3 10) + (68 3 3)

32 = 1 846

32 = 57.6 kg

4 (a) 32 (b) Nilai min

=

(455.5 3 3) + (465.5 3 7) + (475.5 3 8) + (485.5 3 5) + (495.5 3 5) + (505.5 3 4)

32

= 15 35632

= RM479.88

5 (a)

Masa (jam)

Kek

erap

an

1

2

3

4

5

6

7

010.5 20.5 30.5 40.5 50.5 60.5 70.5 80.5 90.5

(b) Min

=

(25.5 3 5) + (35.5 3 3) + (45.5 3 7) + (55.5 3 6) + (65.5 3 4) + (75.5 3 5)

30

= 1 52530

= 50.83 jam 6 (a) Bilangan kasut yang dijual = 10 + 13 + 17 + 8 + 2 = 50 (b) 6 7

Kekerapan 10 26 43 50 61 70 longgokan

8 (a) Julat = 19 3 = 16 Median = 6 (b) Julat = 4.1 0.5 = 3.6 Median = 1.2 9 (a) 60 (b) Median = 60 10 (a)

Kekerapan 7 19 38 52 60 longgokan

(b)

Tempoh (jam)

Kek

erap

an lo

nggo

kan

10

20

30

40

50

60

09.5 14.5 19.5 24.5 29.5 34.5

Kuartil pertama

Median

Kuartil ketiga

(c) (i) Median = 22 (ii) Julat antara kuartil

= 26.5 18 = 8.5

Anjakan Prima Math F4 Jaw 4th.indd 11 9/10/2017 3:50:34 PM

J12 Global Mediastreet Sdn. Bhd. (762284-U)

BAB 7 Kebarangkalian I 7.1 Ruang Sampel 1 (a) (i) Mungkin (ii) Tidak mungkin (b) (i) Tidak mungkin (ii) Mungkin (c) (i) Mungkin (ii) Mungkin (d) (i) Mungkin (ii) Tidak mungkin 2 (a) S, P, A, C, E (b) Matematik, Sains, Sejarah 3 (a) S = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (5, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)} (b) S = {Kepala Kepala, Kepala Ekor, Ekor Kepala, Ekor Ekor}

Latihan Bestari 7.1 1 (a) Tidak mungkin (b) Mungkin 2 (a) Guli hijau, guli kuning, guli merah (b) 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,

22, 23, 24, 25, 26, 27, 28, 29 3 S = {(4, 1), (4, 2), (4, 3), (8, 1), (8, 2), (8, 3),

(16, 1), (16, 2), (16, 3)}

7.2 Peristiwa 1 (a) (i) {3, 6, 9, 12} (ii) {9} (b) (i) {11, 12, 13, 14, 15, 16, 17, 18, 19} (ii) {12, 14, 16, 18} (c) (i) {M, A, G, I, C} (ii) {A, I} (d) (i) {1, 2, 3, 4, 5, 6} (ii) {2, 3, 5}

Latihan Bestari 7.2 1 (a) W = {2, 4, 6} (b) X = {A, I} (c) Y = {2, 3, 5, 7} 2 {12, 18, 24, 30, 36}

7.3 Kebarangkalian Suatu Peristiwa

1 (a) (i) 411

(ii) 7

11

(b) (i) 35

(ii) 3

5

(c) 71100

(d) (i) 110

(ii) 3

10

2 (a) Bilangan hari hadir lambat

= 25

25 = 10 hari

(b) Bilangan pelajar lelaki

= 49

45 = 20 orang

(c) (i) Pen merah = 77

27

= 57

(ii) Bilangan pen = 10 2 7 = 35 batang (d) (i) Jumlah guli = 50 1 4 = 200

Bilangan guli biru = 35

200

= 120 biji (ii) Bilangan guli hijau = 200 120 50 = 30 biji

x = 30200

= 320

Latihan Bestari 7.3 1 Luas segi empat sama = 18 cm 3 18 cm = 324 cm2 Luas bahagian berlorek = 10 cm 3 10 cm = 100 cm2 Kebarangkalian damak di bahagian berlorek

= 100324

= 2581

2

29

SUDUT KBAT 1 (a) 3

8

(b) Jumlah bola = 85

30 = 48

m = 48 30 = 18 2 Kebarangkalian = 60

300 = 1

5

Bilangan orang lemah = 15

2 000

= 400

PRAKTIS BAB 7

Soalan Objektif 1 A 2 B 3 B 4 C 5 D 6 B 7 B 8 C 9 B 10 A

BAB 8 Bulatan III 8.1 Tangen kepada Bulatan 1 (a) Tidak (b) Ya (c) Ya

2 (a)

O

tangen

P

(b)

O

P

tangen

tangen

3 (a) 72 (b) 22 (c) 62

4 (a) tan = 611

= 0.5454 = 28.61 (b) POQ = 2 72 = 144 = 180 144 = 36 (c) QOR = 180 (2 28) = 180 56 = 124 = 124 2 = 62

Latihan Bestari 8.1 1 CD dan GH 2 POQ = 25 3 2 = 50 u = 180 90 50 = 40 3 OP = 92 + 52 = 10.30 cm 4 QOT = 40 3 2 = 80 u = 180 90 80 = 10

8.2 Sudut di antara Tangen dan Perentas 1 (a) BAQ (b) QTS (c) 50 (d) 94 2 (a) = DEB = 180 62 71 = 47 (b) = QST = (180 48) 2 = 66 (c) = 180 62 90 = 28 (d) DOE = 2 52 = 104 EDO = (180 104) 2 = 38 = BDE = 38 + 28 = 66

Anjakan Prima Math F4 Jaw 4th.indd 12 9/10/2017 3:50:35 PM

J13 Global Mediastreet Sdn. Bhd. (762284-U)

Latihan Bestari 8.2 1 PQB 2 u = QST = 180 52 88 = 40 3 WQO = (180 76) 4 2 = 52 u = 90 52 = 38 4 u = 48 + 43 = 91

8.3 Tangen Sepunya 1 (a) (i) BE (ii) CAD (b) 7

10 = 9

PC PC = 90

7 cm

(c) kos APB = 8

11

APB = 43.34 u = APB = 43.34 (d) TPQ = 31 + 31 = 62 u = 360 90 90 62 = 118 2 (a) BC = 122 72 = 95 = 9.75 cm (b) (i) PE (ii) DQA @ CPA @ BQA (iii) BC = ED = 21 cm 10 cm = 11 cm (c) QC = 122 + 42 = 160 = 12.64 cm

PC = 2012

12.64 cm = 21.07 cm PQ = PC QC = 21.07 cm 12.64 cm = 8.43 cm

Latihan Bestari 8.3 1 PQ = 202 + 22 = 20.10 cm

2 tan 28 = 7AB

AB = 13.17 cm

tan 28 = 12AC

AC = 22.57 cm

BC = 22.57 13.17 = 9.40 cm

SUDUT KBAT 1 = 180360 2 3.142 10 +

180360

2 3.142 5

+ (2 52 + 502 ) = 147.63

PRAKTIS BAB 8Soalan Objektif 1 C 2 A 3 D 4 A 5 B 6 D 7 A 8 B 9 C 10 B11 B 12 C 13 A 14 B 15 C16 A 17 A 18 D 19 C 20 A

BAB 9 Trigonometri II 9.1 Nilai Sinus, Kosinus dan Tangen Suatu Sudut 1 (a) Sukuan III (b) Sukuan IV (c) Sukuan IV (d) Sukuan I (e) Sukuan II 2 (a) (i) (a) 0.8 (b) 0.7 (ii) (a) 0.6 (b) 0.7

(iii) (a) 43

(b) 1 (b) (i) (a) 0.1 (b) 0.9 (ii) (a) 1 (b) 0.4 (iii) (a) 0.1

(b) 94

3 (a) 0.5 (b) 0.75 (c) 0.7 (d) 1.143 (e) 0.8 4 (a) Negatif (b) Positif (c) Negatif

5 (a) 12

(b) 3

2

6 (a) 3 tan 45 + 2 sin 90 = 3(1) + 2(1) = 3 + 2 = 5 (b) 4 kos 60 2 sin 30 = 4(0.5) 2(0.5) = 2 1 = 1 (c) tan 180 + 6 sin 30 = 0 + 6(0.5) = 0 + 3 = 3 7 (a) 180 120 = 60 (b) 200 180 = 20 (c) 360 333 = 27 8 (a) sin 284.5 = sin(360 284.5) = sin 75.5 = 0.9681 9 (a) 39.92, 140.08 (b) 78.64, 281.36 (c) 72.49, 252.49

Latihan Bestari 9.1 1 Sukuan IV

2 tan u = 0.60.76

= 0.7895 3 positif

4 tan 240 = tan 60 = 3

30

601

2

3

5 sin u = 12

u = 45

1

145

452

6 = 60

300

60

7 tan 120 179 = 1.712 8 sin u = 0.1671 u = 9.62 u = 180 + 9.62 = 189.62

9.2 Graf Sinus, Kosinus dan Tangen 1 (a)

900

1

1

y

180 270 360

u = 180

(b)

900

1

1

y

180 270 360

u = 90, 270

(c)

900

1

1

y

180 270 360

u = 270

(d)

900

1

1

y

180 270 360

u = 90

Anjakan Prima Math F4 Jaw 4th.indd 13 9/10/2017 3:50:35 PM

J14 Global Mediastreet Sdn. Bhd. (762284-U)

(e)

900

1

1

y

180 270 360

u = 0, 180

2 (a) M = 180 (b) y = sin 2x untuk 0 < x < 360

Latihan Bestari 9.2 1

27018090

y

x0

1

1

2

90

y

x0

1

3

270

y

x0

1

1

sin u = 1 u = 270

SUDUT KBAT 1 x = (6 sin 60) (6 sin 45) = 0.953 m

PRAKTIS BAB 9Soalan Objektif 1 C 2 B 3 D 4 D 5 A 6 C 7 B 8 D 9 D 10 B11 A 12 C 13 A 14 D 15 C16 A 17 B 18 B 19 A

BAB 10Sudut Dongakan dan Sudut Tunduk

10.1 Sudut Dongakan dan Sudut Tunduk 1 (a) (i) BC

(ii) tan ABC = 512 ABC = 22.61

(b) (i) PQ

(ii) kos PQR = 1627 PQR = 53.66

2 (a) 3.47.6 = 0.4474 tan1 0.4474 = 24.1

(b) 19.630 = 0.6533

sin1 0.6533 = 40.8 (c) 1116 = 0.6875 tan1 0.6875 = 34.5

3 (a) 3040 = 0.75 tan1 0.75 = 36.9

(b) 3560 = 0.5833 tan1 0.5833 = 30.26

(c) x15 = tan 41 x = 0.8693 15 = 13.04 m Tinggi tiang AB = 13.04 m + 19 m = 32.04 m

Latihan Bestari 10.1

1 tan u = 2418

u = 53.13

2 sin 50 = QV26

QV = 19.92 m

SUDUT KBAT 1 QW = (15 tan 45) = 15 m 2 ML = 2(15 tan 52) = 38.398 m

PRAKTIS BAB 10Soalan Objektif 1 A 2 D 3 A 4 A 5 C 6 B 7 A 8 B 9 C 10 B11 A 12 B 13 A 14 D 15 B16 A 17 A 18 C

BAB 11Garis dan Satah dalam Tiga Dimensi

11.1 Sudut antara Garis dan Satah 1 (a) (i) ABCD (ii) VAD, VCD (iii) VAB, VBC (b) (i) ABCD, EFGH (ii) ABFE, BCGF, GCDH, AEHD (iii) Tiada

2 (a) (i) BC, CF, BF (ii) AD, DE, BC, CF (b) (i) AB, BF, AF (ii) AF, DF, BF, CF 3 (a) DE, CF (b) AF, DE 4 (a) (i) DAH (ii) DBH (iii) BAG (b) (i) DAE (ii) EBD 5 (a) tan VEW = 9

6 = 1.5 VEW = 56.31

(b) BD = 122 + 62

= 180 = 13.42 cm

tan EBD = 813.42

= 0.5961 EBD = 30.8

(c) tan CFB = 76

= 1.667 CFB = 49.4 (d) BE = 202 + 112 = 521 = 22.83 cm

tan EBH = 1422.83

EBH = 31.52

Latihan Bestari 11.1 1 AB, CD, EF, HG 2 ABV, BCV 3 BF = 42 + 52

= 6.403 cm

tan u = 76.403

u = 47.55

4 Anggap Q ialah titik tengah DH AQ = 42 + 72

= 8.062 cm

tan u = 108.062

u = 51.12

11.2 Sudut di antara Dua Satah 1 (a) GH (b) CF 2 (a) BEF @ CHG (b) VFE (c) BFC @ AED

Anjakan Prima Math F4 Jaw 4th.indd 14 9/10/2017 3:50:36 PM

J15 Global Mediastreet Sdn. Bhd. (762284-U)

3 (a) tan FBE = 915 = 0.6 FBE = 30.96

(b) tan FCD = 710 = 0.7 FCD = 35

(c) tan BDC = 916 = 0.5625 BDC = 29.36

Latihan Bestari 11.2 1 BCFE, ADFE 2 AD

3 tan u = 1015

u = 33.7

4 Anggap N ialah titik tengah HG

tan u = 106

u = 59.04

SUDUT KBAT 1 (a) VTU atau UTV

(b) tan VTU = 62 428

VTU = 29.19 atau 29 11

PRAKTIS BAB 11Soalan Objektif 1 D 2 B 3 C 4 A 5 D 6 C 7 D 8 B 9 D 10 C11 C 12 D 13 B 14 B 15 B16 B 17 A 18 C 19 A 20 D

Soalan Subjektif

1 tan u = 910

u = 41.99

2 tan u = 1712

u = 54.78

3 DB = 202 + 62

= 20.88 cm

DE = 20.88 3 12

= 10.44 cm

tan u = 1510.44

u = 55.16

4 tan u = 1411

u = 51.84

5 BD = 142 + 52

= 14.87 cm

tan u = 714.87

u = 25.21

6 AC = 152 + 172

= 22.67 cm

tan u = 822.67

u = 19.44

7 AC = 202 152

= 13.23 cm

tan u = 13.2317

u = 37.89

8 tan u = 920

u = 24.23

9 CM = 102 + 142

= 17.20 cm

tan u = 1617.20

u = 42.93

10 tan u = 58

u = 32.01

Penilaian Akhir TahunKERTAS 1 1 C 2 A 3 B 4 C 5 C 6 B 7 B 8 B 9 B 10 B11 D 12 D 13 A 14 C 15 D16 A 17 A 18 C 19 C 20 B21 C 22 D 23 C 24 D 25 B26 A 27 A 28 C 29 C 30 A31 A 32 A 33 A 34 C 35 A36 C 37 C 38 B 39 D 40 A

KERTAS 2 1 (4.71 + 2.962) 0.00035 = 21 920 = 21 900 (kepada tiga angka bererti)

2 1.92 104

6 500 = 2.95 108

3 (2x + 1)2 (x + 2) = 4x2 + 4x + 1 x 2 = 4x2 + 3x 1 = (4x 1)(x + 1)

4 2y(y + 3) = 3 + 5y 2y2 + 6y 3 5y = 0 2y2 + y 3 = 0 (2y + 3)(y 1) = 0

y = 32

atau 1

5 (a)

A B

C

(b)

A B

C

6 (a) (x + 1) + 8 + x + (2x + 3) + (x + 4) = 46 5x + 16 = 46 5x = 30 x = 6(b) n(Q) = (x + 1) + 8 + (x + 4) = 2x + 13 = 2(6) + 13 = 25

7 (a) Bilangan guli merah

= 25

40 = 16

Bilangan guli hijau = 40 8 16 = 16

(b) Bilangan guli hijau = 11, jumlah guli = 35. Jadi, kebarangkalian memilih sebiji guli

hijau = 1135

8 (a) x = 180 (75 + 20) = 85(b) y = 20 + 20 = 40

9 (a) tan 60 = PQ15

PQ = 15 tan 60 = 26 m(b) katakan sudut dongakan titik Q dari titik

S ialah .

tan = 26 1015

= 1.067

= 46 51 10 (a) VMA

(b) AM = 162 82 = 192

tan VMA = 18192

= 1.3

VMA = 52 26

Anjakan Prima Math F4 Jaw 4th.indd 15 9/10/2017 3:50:36 PM

J16 Global Mediastreet Sdn. Bhd. (762284-U)

11 (a) Persamaan bagi garis lurus RS ialah x = 4.

(b) Kecerunan bagi garis lurus PS = 12

, dan

PS melalui titik (4, 0). Jadi, persamaan bagi garis lurus PS ialah y2 y1 = m(x2 x1)

y 0 = 12

(x + 4)

y = 12

x 2

12 (a) Min anggaran jisim bagi guli-guli ini = (5 5 + 10 16 + 15 20 + 20 24 +

25 18 + 30 10 + 35 7) 100 = 1 960 100 = 19.6 g(b)

Jisim KekerapanKekerapan longgokan

3 7 5 5

8 12 16 21

13 17 20 41

18 22 24 65

23 27 18 83

28 32 10 93

33 37 7 100

(c)

2.5 0

20

10

30

40

50

71

7.5 12.5 17.5 22.5 27.5 32.5 37.5

60

70

80

90

100

Kekerapan longgokan

Jisim (g)

25

(d) Bilangan guli dengan jisim sekurang-kurangnya 25 g = 100 71 = 29

13 (a) Palsu (Sebilangan persamaan kuadratik tidak mempunyai punca)

(b) Pernyataan 1: 8 ialah nombor genap. Pernyataan 2: 8 ialah gandaan 2.(c) Premis 2: 4 bukan faktor bagi 30.

14 (a) (i) 145 34 terletak di sukuan II dan kos 145 34 adalah negatif.

Jadi kos 145 34 = kos (180 145 34)

= kos 34 26 = 0.8248

(ii) 218 25 terletak di sukuan III dan tan 218 25 adalah positif.

Jadi, tan 218 25 = tan (218 25 180)

= tan 38 25 = 0.7931(b) sin = 0.7234. Sudut tirus bagi = 46 20. Jadi = 180 + 46 20 = 226 20.(c) (i) y = kos x (ii) p = 360 64 = 296

15 (a)

Markah Kekerapan Titik tengah

21 30 2 25.5

31 40 4 35.5

41 50 9 45.5

51 60 5 55.5

61 70 5 65.5

71 80 2 75.5

81 90 3 85.5

(b) 10(c) Min anggaran markah = (25.5 2 + 35.5 4 + 45.5 9 +

55.5 5 + 65.5 5 + 75.5 2 + 85.5 3) 30

= 1 615 30 = 53.83 (d)

Keke

rapa

n

2

4

5

3

1

Markah25.5 35.5 45.5 55.5 65.5 75.5 85.5

6

7

8

9

10

0

(e) Selang kelas mod = 41 50

16 (a) Persamaan bagi garis lurus AB ialah y = 2.

(b) Kecerunan AD = 4 20 2

= 1

Pintasan-y = 4. Jadi persamaan garis lurus

AD ialah y = x + 4.(c) Kecerunan BC = kecerunan AD = 1 Katakan C = (0, y).

Jadi, y 20 5

= 1

y = 7 Pintasan-y bagi garis lurus BC ialah 7. (d) Pintasan-y = 7 (0, 7), 3(7) + 7(0) = k k = 21

3y + 7x = 21 (x, 0), 3(0) + 7x = 21 x = 2 Titik persilangan garis lurus dengan

paksi-x ialah (3, 0).

Soalan KBATBab 1 Luas taman = 20.25 m2Oleh itu, panjang tepi taman = 20.25 = 4.5 mPanjang tepi luar pejalan kaki itu = 4.5 m + 1.5 m + 1.5 m = 7.5 mMaka, jumlah luas pejalan kaki itu= 7.52 20.25 = 36 m2Jumlah kos membina laluan pejalan kaki itu = RM53 36 = RM1 908 = RM1 900

Bab 2x = 100

x 15x2 15x = 100(x 20)(x + 5) = 0x = 20 @ x = 5 (ditolak)Purata kelajuan = 20 km j1

Bab 3(a) 25 (b) 75(c) 50

Bab 4(a) n2 + 1, n = 1, 2, 3, 4, (b) 170

Bab 70.15 900 = 135

Bab 860

Bab 10Bangunan A = (60 sin 40) + 15 = 53.567 m

Bab 11(a) APD atau DPA (ditanda pada rajah)(b) tan PQR = 6

24

PQR = 14.04 atau 14 2

Membaca

75 5025

Aktiviti luar

Anjakan Prima Math F4 Jaw 4th.indd 16 9/10/2017 3:50:37 PM