ONG HWAI CHYUAN - UM Students'...

20
TECHNO-ECONOMIC ANALYSIS OF BIODIESEL PRODUCTION FROM PALM, JATROPHA CURCAS AND CALOPHYLLUM INOPHYLLUM FOR ROAD TRANSPORT IN MALAYSIA ONG HWAI CHYUAN FACULTY OF ENGINEERING UNIVERSITY OF MALAYA KUALA LUMPUR 2012

Transcript of ONG HWAI CHYUAN - UM Students'...

TECHNO-ECONOMIC ANALYSIS OF BIODIESEL PRODUCTION FROM

PALM, JATROPHA CURCAS AND CALOPHYLLUM INOPHYLLUM FOR

ROAD TRANSPORT IN MALAYSIA

ONG HWAI CHYUAN

FACULTY OF ENGINEERING UNIVERSITY OF MALAYA

KUALA LUMPUR

2012

TECHNO-ECONOMIC ANALYSIS OF BIODIESEL PRODUCTION

FROM PALM, JATROPHA CURCAS AND CALOPHYLLUM

INOPHYLLUM FOR ROAD TRANSPORT IN MALAYSIA

ONG HWAI CHYUAN

THESIS SUBMITTED IN FULFILMENT

OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF ENGINEERING

UNIVERSITY OF MALAYA

KUALA LUMPUR

ii

UNIVERSITI OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: ONG HWAI CHYUAN (I.C/Passport No: 830708-07-5503)

Registration/Matric No: KHA080029

Name of Degree: Doctor of Philosophy (Ph.D)

Title of Project Paper/Research Report/Dissertation/Thesis: Techno-economics analysis of biodiesel

production from palm, jatropha curcas and calophyllum inophyllum for road transport in Malaysia

Field of Study: Energy (Alternative fuel)

I do solemnly and sincerely declare that:

1. I am the sole author/writer of this work;

2. This work is original;

3. Any use of any work in which copyright exists was done by way of fair dealing and for

permitted purposes and any excerpt or extract from, or reference to or reproduction of any

copyright work has been disclosed expressly and sufficiently and the title of the work and its

authorship have been acknowledged in this work;

4. I do not have any actual knowledge nor ought I reasonably to know that the making of this

work constitutes an infringement of any copyright work;

5. I hereby assign all and every rights in the copyright to this work to the University of Malaya

(“UM”), who henceforth shall be owner of the copyright in this work and that any reproduction

or use in any form or by any means whatsoever is prohibited without the written consent of

UM having been first had and obtained;

6. I am fully aware that if in the course of making this work I have infringed any copyright

whether intentionally or otherwise, I may be subject to legal action or any other action as may

be determined by UM.

Candidate’s Signature Date:

Subscribed and solemnly declared before,

Witness’s Signature Date:

Name:

Designation:

iii

ABSTRACT

Transportation sector has a dominant role in global fuel consumption and greenhouse

gas emissions. Due to the dramatic increase in greenhouse gas emission, sustainable

development of this sector has raised the concern in many countries including Malaysia.

Biodiesel is a renewable energy that has great potential to serve as an alternative fuel to

fossil diesel in the compression ignition (CI) engine. Although Malaysia is one of the

biggest biodiesel fuel producers, the commercialization of biodiesel has not been fully

undertaken in a large scale. Besides the technical barriers, there are several nontechnical

limiting factors, which impede the development of biodiesel. A wide variety of

biodiesel research on transesterification, performance and emission analysis is currently

available worldwide. However, the study on techno-economic and feasibility of

biodiesel fuel for Malaysian condition is limited. Therefore, this study is focused on

biodiesel production and techno-economic comparison among palm, jatropha curcas

and calophyllum inophyllum biodiesel as transportation fuel in Malaysia. Moreover, the

present study attempts to find out the impact of biodiesel implementation towards the

energy scenario, environmental and economy. The total CO2 equivalent emissions for

road transport are 59,383 million kg. Therefore, alkaline catalyst transesterification

process is used to produce palm, jatropha curcas and calophyllum inophyllum biodiesel

as biofuel for road transport vehicles. It was found that the life cycle cost for 50 ktoe

palm, jatropha curcas and calophyllum inophyllum biodiesel production plant with an

operating period of 20 years is $764, $583 and $604 million respectively. The largest

economic factor for biodiesel production is feedstock cost. Furthermore, replacing 5%

of diesel with biodiesel in road transport vehicles can reduce the CO2 emission up to

1200 million kg in year 2031.

In order to repay the carbon debt from land converting to feedstock cropland,

calophyllum inophyllum biodiesel requires the lowest cropland and ecosystem carbon

iv

payback period compared to palm and jatropha curcas biodiesel due to the high oil

yield which is 4680 kg/ha. When the subsidy policy and tax exemption are

implemented, biodiesel fuel is more competitive than fossil diesel at the current

production costs. Apart from that, the key factor for biodiesel fuel to be able to compete

with diesel fuel is due to the high crude petroleum price coupled with low feedstock oil

price. Therefore, this study serves as a guideline for further investigation and research

on biodiesel production, subsidy cost and other limiting factors before the wider

utilization of biodiesel in Malaysia.

v

ABSTRAK

Sektor pengangkutan telah mendominasi penggunaan bahan api global dan pelepasan

gas rumah hijau telah meningkat pada kadar yang membimbangkan. Ini telah

menyebabkan kebimbangan kebanyakan negara termasuk Malaysia untuk memajukan

tenaga mampan bagi sektor ini. Biodiesel adalah tenaga boleh diperbaharui yang

mempunyai potensi besar sebagai bahan api alternatif kepada diesel dalam enjin

pencucuhan mampatan. Malaysia merupakan salah satu pengeluar terbesar bahan api

biodiesel, tetapi pengkomersilan biodiesel tidak sepenuhnya dilaksanakan secara besar-

besaran. Selain halangan teknikal, terdapat beberapa faktor bukan teknikal yang

mengehadkan pembangunan biodiesel. Pelbagai penyelidikan biodiesel prestasi

transesterification dan kajian pelepasan di seluruh dunia telah dijalankan. Walau

bagaimanapun, kajian mengenai analisis tekno-ekonomi dan kemungkinan bahan api

biodiesel bagi keadaan Malaysia masih amat terhad dan tidak diiktiraf secara meluas.

Oleh itu, kajian ini memberi tumpuan kepada menghasilkan biodiesel dan analisis

tekno-ekonomi perbandingan kelapa sawit, jatropha curcas and calophyllum

inophyllum biodiesel sebagai bahan api pengangkutan di Malaysia. Selain itu, kajian ini

juga penting untuk mencari kesan pelaksanaan biodiesel dari segi senario tenaga, kesan

alam sekitar dan ekonomi. Jumlah pelepasan CO2 bagi pengangkutan jalan adalah

sebanyak 59,383 juta kg. Oleh itu, proses transesterification digunakan untuk

menghasilkan biodiesel daripada kelapa sawit, jatropha curcas and calophyllum

inophyllum sebagai biobahan api bagi pengangkutan jalan. Adalah didapati bahawa kos

kitaran hayat selama 50 ktoe sawit, jatropha curcas and calophyllum inophyllum

bioidesel dengan tempoh beroperasi 20 tahun ialah $764, $583 dan $604 juta masing-

masing. Faktor terbesar bagi pengeluaran biodiesel adalah kos bahan mentah. Selain itu,

5% daripada diesel yang digantikan dengan bahan api biodiesel dalam pengangkutan

jalan boleh mengurangkan sebanyak 1200 juta kg CO2 pada tahun 2031.

vi

Untuk bayaran balik hutang karbon daripada penukaran tanah kepada tanah pertanian

buah mentah, Calophyllum inophyllum biodiesel memerlukan tanah pertanian dan

tempoh bayar balik karbon ekosistem yang paling rendah berbanding dengan sawit dan

jatropha biodiesel kerana hasil minyaknya yang tinggi iaitu 4680 kg/ha. Apabila dasar

subsidi dan pengecualian cukai ini dilaksanakan, bahan api biodiesel adalah lebih

berdaya saing berbanding dengan diesel berasaskan kos pengeluaran semasa. Selain itu,

faktor utama untuk bahan api biodiesel dapat bersaing dengan minyak diesel adalah

disebabkan fakta harga petroleum mentah yang lebih tinggi ditambah pula dengan harga

bahan mentah biodiesel yang rendah. Oleh itu, kajian ini berfungsi sebagai garis

panduan untuk kajian dan penyelidikan lanjut mengenai pengeluaran biodiesel, kos

subsidi dan faktor-faktor terhad yang lain sebelum penggunaan biodiesel boleh

dilaksanakan secara meluas di Malaysia.

vii

ACKNOWLEDGEMENT

First of all, it is with immense gratitude that I acknowledge the support and help of my

supervisor, Prof. Dr. TM Indra Mahlia and Prof. Dr. Masjuki Haji Hassan. Their

constructive suggestions, patience, guidance and teaching are much appreciated. All

these have contributed significantly towards the completion of this thesis. I would also

like to express my gratitude to the University of Malaya, Kuala Lumpur, Malaysia for

the financial support under PPP research fund and Fellowship Scheme University of

Malaya.

To Dr. Ishenny M. Noor and all the lecturers who have taught me throughout my study

and research, I am truly indebted for their support, encouragement, guidance and words

of advice. I warmly thank all administration staff in the Engineering Dean Office and

Mechanical Engineering Department for their kind assistance. Many thanks also to

officers from various agencies (both government and non-government) that provided all

the relevant data needed to complete this thesis.

I also would like to acknowledge and appreciate my family and friends especially to

Arridina Susan, Abdelaziz Emadeldin Atabani for their continuous support and

encouragement throughout this research. Without their encouragement and

understanding it would have been impossible for me to finish this work.

Lastly, my regards and blessings to all of those who supported me in any respect during

the completion of the project.

viii

TABLE OF CONTENTS

Title Page

TITLE PAGE i

DECLARATION OF CANDIDATE ii

ABSTRACT iv

ABSTRAK vi

ACKNOWLEDGEMENT vii

CONTENTS viii

LIST OF FIGURES xi

LIST OF TABLES xiv

NOMENCLATURE xvii

CHAPTER 1: INTRODUCTION 1

1.1 Background 2

1.2 Problem statement 4

1.3 Objectives of the study 5

1.4 Contribution of the study 7

1.5 Thesis Outline 9

CHAPTER 2 LITERATURE REVIEW 10

2.1 Introduction 10

2.2 Malaysia’s energy scenario 13

2.3 Energy pattern of transportation sector 17

2.3.1 Energy consumption by transportation sector 20

2.3.2 Mode of transportation 21

2.3.3 Transportation fleet pattern 22

2.4 Biodiesel 25

2.4.1 Standard of biodiesel 28

2.4.2 Feedstock (raw material) of biodiesel 33

2.4.3 Biodiesel trend and policy 36

2.4.4 Palm oil based biodiesel 40

2.4.5 Jatropha curcas biodiesel 43

2.4.6 Calophyllum inophyllum biodiesel 45

ix

2.5 Production of biodiesel 49

2.6 Techno-economic of biodiesel production 53

CHAPTER 3: METHODOLOGY 55

3.1 Introduction 55

3.2 Data prediction 56

3.3 Road transport emission estimation method 56

3.3.1 Total emissions 57

3.3.2 Hot emissions 57

3.3.3 Cold start emissions 58

3.4 Laboratory experiment of biodiesel production 60

3.4.1 Materials and experiment apparatus 60

3.4.2 FFA percentage 62

3.4.3 Degumming of crude oil 63

3.4.4 Pre-treatment process (Acid-catalyzed esterification

process)

64

3.4.5 Transesterification process of oil 65

3.4.6 Post-treatment process 67

3.4.7 Characterization methyl ester (biodiesel) 69

3.5 Life cycle cost and payback period 70

3.5.1 Life cycle cost 70

3.5.2 Payback period 74

3.5.3 Sensitivity analysis 75

3.6 Potential fuel saving and environmental impact 76

3.6.1 Potential fuel saving 76

3.6.2 Potential environmental impact 77

3.7 Data collection and assessment 78

3.7.1 Data input for COPERT model 79

3.7.2 Economic indicator for life cycle model 81

CHAPTER 4: RESULTS AND DISCUSSION 83

4.1 Introduction 83

4.2 Prediction of diesel fuel consumption and number of road

vehicles

84

4.3 Road transport emissions 85

x

4.4 Biodiesel production 87

4.4.1 Properties of crude vegetable oil 87

4.4.2 Degumming process 90

4.4.3 Acid catalyzed esterification process 91

4.4.4 Alkaline catalyzed transesterification process 92

4.4.5 Biodiesel properties of palm, jatropha curcas and

calophyllum inophyllum

93

4.5 Life cycle cost 98

4.6 Sensitivity analysis 104

4.7 Taxation and subsidy scenarios on biodiesel fuel 111

4.7.1 Taxation and subsidy scenarios at varying feedstock

price

114

4.8 Energy and emission impact 117

4.8.1 Life cycle emission saving 121

4.8.2 Ecosystem carbon payback period 122

4.8.3 Potential energy and emission saving of biodiesel 123

4.9 Economic impact: biodiesel breakeven cost 128

4.9.1 Potential cost saving and subsidy costs 132

CHAPTER 5: CONCLUSION 137

5.1 Conclusion 137

5.2 Recommendation 139

REFERENCES 141

APPENDIXES 154

Appendix A Related Publication 155

Appendix B Invitation letter from JARI (Japanese Automobile

Research Institute)

156

Appendix C Diagrams and figures of biodiesel production process

and the properties test

157

Appendix D Carbon stocks for tropical landscapes 161

Appendix E Historical data and predicted diesel fuel consumption

trend for transportation sector.

162

xi

LIST OF FIGURES

Figure No. Page

2.1 World primary energy consumption by sources in 2011 11

2.2 CO2 emissions from transportation sector by mode 13

2.3 Primary energy supply by fuel type in Malaysia 14

2.4 Final energy consumption by sector in Malaysia 14

2.5 Final energy consumption by sector in 2010 17

2.6 Energy consumption of petroleum products in 2010 18

2.7 Fuel economy ratio for road transport in Malaysia 19

2.8 Energy use pattern of transportation sector by fuel types 20

2.9 Proportion of passenger by transportation type 21

2.10 Proportion of freight by transportation type. 21

2.11 Typical structure of a triglyceride molecule 26

2.12 Production oil yield for various source of biodiesel feedstock 35

2.13 Oil palm tree and fruits 40

2.14 Fresh oil palm fruit and its longitudinal section 41

2.15 World palm oil production in 2009 42

2.16 Jatropha curcas plant and seed 44

2.17 Photo of calophyllum inophyllum 45

2.18 Calophyllum inophyllum seed and cracked shell showing

kernel inside

47

3.1 Flow chart for COPERT methodology 59

3.2 Photo of crude palm oil (left), crude jatropha curcas oil

(center) and crude calophyllum inophyllum oil (right).

61

3.3 Schematic diagram of experimental setup and apparatus for

esterification and transesterification process

61

xii

3.4 Experiment set up of esterification and transesterification

process.

65

3.5 Phase separation process 66

3.6 Flow chart of biodiesel production process 68

4.1 Comparison of fatty acid composition of palm, jatropha

curcas and calophyllum inophyllum oil.

89

4.2 Palm (left), jatropha curcas (centre) and calophyllum

inophyllum biodiesel (right)

93

4.3 Life cycle cost of biodiesel production over 20 years life time 99

4.4 Comparison of life cycle cost for palm jatropha curcas and

calophyllum inophyllum biodiesel production

100

4.5 Distribution of biodiesel production life cycle cost 100

4.6 Sensitivity analysis of life cycle cost for palm biodiesel

production

105

4.7 Sensitivity analysis of life cycle cost for jatropha curcas

biodiesel production

106

4.8 Sensitivity analysis of life cycle cost for calophyllum

inophyllum biodiesel production

107

4.9 The impact of crude palm oil price on the biodiesel production

cost

108

4.10 The impact of jatropha curcas oil price on the biodiesel

production cost

109

4.11 The impact of calophyllum inophyllum oil price on the

biodiesel production cost

110

4.12 Taxation and subsidy scenarios of palm biodiesel on CPO

price

114

xiii

4.13 Taxation and subsidy scenarios of jatropha curcas biodiesel

on CJO price

115

4.14 Taxation and subsidy scenarios of calophyllum inophyllum

biodiesel on CBO price

116

4.15 Impact of CO2 saving from 5% biodiesel substitution for

diesel consumption

121

4.16 Diesel fuel production cost as a function of crude petroleum

price.

127

4.17 Breakeven price for palm biodiesel production at different

petroleum and CPO prices

129

4.18 Breakeven price for jatropha curcas biodiesel production at

different petroleum and CJO prices

130

4.19 Breakeven price for calophyllum inophyllum biodiesel

production at different petroleum and CBO prices

131

A.1 Historical data and predicted diesel fuel consumption trend for

transportation sector from 1980 to 2031 in Malaysia

162

xiv

LIST OF TABLES

Table No. Page

2.1 Global final energy consumption by sector 11

2.2 Global CO2 emission by major region and sector in 2010 12

2.3 Primary energy supply share in Malaysia 16

2.4 Road transport vehicles in Malaysia 22

2.5 Proportion trend of private and public transport vehicles for

road transport

24

2.6 Common fatty acids chemical structure for vegetable oil 27

2.7 Technical properties of biodiesel 29

2.8 ASTM D6751 standard properties for biodiesel (B100) 31

2.9 European Union standard (EN 14214) properties for biodiesel 32

2.10 List of the biodiesel feedstock 33

2.11 Top 10 countries by absolute biodiesel production 37

2.12 Summary of biofuel policies in some selected countries 38

2.13 The dry weight composition of fresh ripe fruit and mesocarp for

oil palm

41

2.14 Vernacular names for calophyllum inophyllum 46

2.15 Comparison of biodiesel production cost 54

3.1 The detail of transesterification process 66

3.2 Average ambient temperature in Malaysia 79

3.3 Road transport speed limit for various roads 80

3.4 Summary of economic data and indicators 81

3.5 Summary of diesel and biodiesel fuel properties 82

4.1 Diesel fuel consumption projection for transportation sector

from 2012 to 2031

84

xv

4.2 Road transport emission for year 2010 in Malaysia 86

4.3 CO2 equivalent emissions 86

4.4 Physicochemical properties of crude palm, jatropha curcas and

calophyllum inophyllum oil

87

4.5 Physicochemical properties of crude and degummed

calophyllum inophyllum oil

90

4.6 Summary of biodiesel esterification and transesterification

process

92

4.7 Physiochemical properties of palm, jatropha curcas and

calophyllum inophyllum biodiesel (methyl ester) compare with

ASTM and EN standard.

94

4.8 Summary of life cycle cost and payback period for biodiesel

production

103

4.9 Palm biodiesel taxation and subsidy scenarios at current

production cost

111

4.10 Jatropha curcas biodiesel taxation and subsidy scenarios at

current production cost

112

4.11 Calophyllum inophyllum biodiesel taxation and subsidy

scenarios at current production cost

113

4.12 Palm biodiesel and cropland needed 118

4.13 Jatropha curcas biodiesel and cropland needed 119

4.14 Calophyllum inophyllum biodiesel and cropland needed 120

4.15 Impact of cropland, energy and CO2 saving for palm biodiesel

at difference replacement rate

123

4.16 Impact of cropland, energy and CO2 saving for jatropha curcas

biodiesel at difference replacement rate

124

xvi

4.17 Impact of cropland, energy and CO2 saving for calophyllum

inophyllum biodiesel at difference replacement rate

126

4.18 Saving and subsidy costs for replacing 5% of diesel fuel with

palm biodiesel

133

4.19 Saving and subsidy costs for replacing 5% of diesel fuel with

jatropha curcas biodiesel

134

4.20 Saving and subsidy costs for replacing 5% of diesel fuel with

calophyllum inophyllum biodiesel

135

A.1 Estimates of carbon stocks for tropical landscapes 161

xvii

NOMENCLATURE

Symbol Description Unit

β Fraction of mileage driven with cold engines or catalyst

operated below the light-off temperature.

-

BC Biodiesel needed (toe)

BCC Carbon stock for biodiesel cropland (toe/ha)

BFP Biodiesel price ($/litre)

BL Unit conversion : barrel to litre (1 barrel = 159 litre) (litre/barrel)

BP By product credit ($)

CNaOH Molarity or molar concentration (mol/L)

CC Capital cost ($)

CE Yield of biodiesel (FAME) conversion (%)

CLR Cropland required (hectare)

CPW Compound present worth factor -

COP Crude oil price ($/barrel)

CPP Carbon payback period (year)

d Deprecation ratio (%)

DC Diesel consumption (toe)

DR Diesel replacement (toe)

E Emissions pollutant (g)

e Emission factor (g/km)

EC Energy content of diesel fuel (GJ/toe)

EFB Life cycle emission factor by biodiesel fuel (kg/GJ)

EFD Life cycle emission factor by diesel fuel (kg/GJ)

FBC Final biodiesel unit cost ($/litre)

FC Feedstock cost ($)

FDC Fossil diesel cost ($/litre)

FP Feedstock price ($)

FU Feedstock consumption (kg)

GCF Glycerol conversion factor -

GP Glycerol price ($/kg)

HVB Heating value of biodiesel fuel (MJ/kg)

HVD Heating value of diesel fuel (MJ/kg)

i Year (year)

k Constant value -

LCC Life cycle cost ($)

LSC Carbon stock for natural forest (kg/ha)

M Mileage per vehicle (km/veh)

mNaOH Mass of NaOH (g)

mOC Mass of oleic acid in oil (g)

MNaOH Molar mass of NaOH (Molecular weight of NaOH = 40

g/mol)

(g/mol)

xviii

MOA Molar mass of oleic acid (Molecular weight of oleic

acid is 282.5 g/mol)

(g/mol)

MONaOH Mole of NaOH solution used in titration (mol)

MC Maintenance cost ($)

MR Maintenance rate (%)

η Fossil diesel replacement rate (%)

N Number of vehicles (Veh)

n Project life time (year)

OC Operating cost ($)

OR Operating rate ($/toe)

OY Oil yield of biodiesel feedstock (kg/ha)

ρ Density (kg/m3)

PC Annual biodiesel production capacity (toe/year)

PP Payback period (year)

PWF Present worth factor -

r Discount rate (%)

RC Replacement cost ($)

RP Feedstock reference price ($/kg)

s Growth rate of feedstock price (%)

SR Substitution ratio of biodiesel fuel to diesel fuel -

SV Salvage value ($)

TAX Annual total tax ($/year)

TBS Annual total biodiesel sales ($/year)

TCB Total carbon emitter by biodiesel fuel (kg)

TCD Total carbon emitter by diesel fuel (kg)

TCS Total carbon saving (kg)

TDS Total diesel energy saving (GJ)

TPC Annual total production costs ($/year)

TR Tax ratio (%)

vNaOH Volume of NaOH solution used in titration (ml)

x Starting year of prediction (year)

y Prediction value -

Subscript

avg Average capital cost

cold Emissions during transient thermal engine operation (cold start)

d Diesel fuel

high Highest capital cost

hot Emissions during stabilised (hot) engine operation

j Vehicles category j

k Road type k

low Lowest capital cost

xix

n Biodiesel fuel (palm, , jatropha curcas and calophyllum

inophyllum)

p Emission pollutant p

vol Volume

w Weight

Superscript

e Biodiesel for feedstock e (palm, jatropha curcas and

calophyllum inophyllum)

Abbreviation

ATF & AVgas Airline turbine fuel and aviation gasoline

CBO Crude calophyllum inophyllum oil

CH4 Methane

CIME Calophyllum inophyllum methyl ester

CJO Crude jatropha curcas oil

CO Carbon monoxide

CO2 Carbon dioxide

CPO Crude palm oil

GHG Greenhouse gas

GWP Global warming potential

HDV Heavy duty vehicle

JCME Jatropha curcas methyl ester

LDV Light duty vehicle

NOX Nitrogen oxides (NO and NO2)

N2O Nitrous oxide

NMVOC Non Methane VOC

PM Particulate matter

POME Palm oil methyl ester

VOC Volatile organic compound