Pelbagai strategi terkini 16 mei 2013

52
Kurikulum Standa rd Sekolah Rendah Pentaksiran Berasaskan Sekolah KSSR & PB S P Bahagian Pembangunan Kurikulum Kementerian Pelajaran Malaysia * STRATEGI DALAM PENYELESAIAN MASALAH

description

KSSR Matematik Tahun 4 @ SK Sg Udang

Transcript of Pelbagai strategi terkini 16 mei 2013

Page 1: Pelbagai strategi terkini 16 mei 2013

Ku

ri

ku

lu

m

St

an

da

rd

S

ek

ol

ah

R

en

da

hP

en

ta

ks

ir

an

B

er

as

as

ka

n

Se

ko

la

h

KS

SR

&

P

BS

P

Bahagian Pembangunan Kurikulum

Kementerian Pelajaran Malaysia *

STRATEGI DALAM

PENYELESAIAN MASALAH

Page 2: Pelbagai strategi terkini 16 mei 2013

*

Perlukah mengajar pelbagai strategi dalam penyelesaian masalah?

3.Menjadikan pembelajaran Matematik itu lebih menarik.

•Murid berbeza dari segi kebolehan, pencapaian, kecenderungan dan minat.

2.Memenuhi keperluan kumpulan lemah, sederhana dan cergas.

6.Melahirkan murid yang mempunyai HOTs/KBAT

(Kemahiran Berfikir Aras Tinggi)

4.Setiap bilik darjah mempunyai halangan dan rintangan yang tersendiri seperti keadaan fizikal, kemudahan bilik darjah, nilai, latar belakang sekolah dan murid.5.Masalah yang dikemukakan berbeza-beza.

Page 3: Pelbagai strategi terkini 16 mei 2013

*

Model Lester (1975)

Beberapa model penyelesaian masalah yang sering digunakan:

Model Polya (1973)

Model Mayer (1983)

Model Schoenfeld (1985)

Page 4: Pelbagai strategi terkini 16 mei 2013

Model Lester (1975)

•Berdasarkan Model Polya, Lester (1978) menyarankan 6 peringkat penyelesaian masalah:•1. Kesedaran masalah•2. Kefahaman masalah•3. Analisis objektif soalan bermasalah•4. Perancangan strategi penyelesaian•5. Perlaksanaan strategi penyelesaian•6. Prosedur dan penilaian penyelesaian

*

Page 5: Pelbagai strategi terkini 16 mei 2013

*

Model Mayer (1983)

•Masalah Terjemahan•Masalah Integrasi3.Penyelesaian Perancangan4.Penyelesaian Eksekusi – melakukan rancangan penyelesaian

Page 6: Pelbagai strategi terkini 16 mei 2013

*

Model Schoenfeld (1985)

•Sumber – cadangan dan pengetahuan prosedural dalam matematik2. Heuristik – strategi dan teknik untuk penyelesaian masalah seperti kerja dari belakang, lukis gambar rajah3. Kawalan – Membuat keputusan tentang bila dan apa sumber dan strategi yang digunakan.4. Kepercayaan – Pandangan dunia matematik yang menentukan bagaimana seseorang menghadapi masalah.

Page 7: Pelbagai strategi terkini 16 mei 2013

*

Kurikulum Bersepadu Sekolah Rendah (KBSR)

➢ Model Polya

❖ Memilih

✓Empat langkah yang mudah difahami dan sering digunakan dalam penyelidikan matematik di negara ini.

Page 8: Pelbagai strategi terkini 16 mei 2013

*

Fasa 1: Memahami Masalah

Penyelesaian masalah yang baik mengandungi 4 fasa:

George Polya (1957)

Fasa 2: Merancang Strategi

Fasa 3: Melaksanakan Strategi

Fasa 4: Menyemak Jawapan

Page 9: Pelbagai strategi terkini 16 mei 2013

*

❖Murid sering gagal menyelesaikan masalah ❖tidak memahami masalah

Fasa 1: Memahami Masalah

❖Soalan cadangan untuk guru:❖Adakah kamu memahami semua makna/

istilah/perkataan yang digunakan.

✓Apa yg perlu kamu cari dan tunjukkan.

✓Adakah maklumat cukup untuk menyelesaikan masalah.

✓Bolehkah anda guna gambar atau diagram

untuk membantu anda memahami masalah.

Page 10: Pelbagai strategi terkini 16 mei 2013

*

❖Ada pelbagai strategi untuk menyelesaikan masalah.

Fasa 2: Merancang Strategi

❖Kemahiran memilih strategi yang sesuai bergantung kepada berapa banyak pengalaman kita menyelesaikan masalah sebelum ini.

❖Dengan itu, guru perlu mengajar murid pelbagai strategi supaya dia dapat memilih strategi yang sesuai untuk menyelesaikan masalah.

Page 11: Pelbagai strategi terkini 16 mei 2013

8. Guna Model.

Pelbagai Strategi Penyelesaian Masalah

1. Cuba jaya.2. Membina senarai/jadual/carta yg sesuai.3. Mengenal pasti kemungkinan-kemungkinan

4. Menggunakan algebra.5. Mengenal pasti pola.

6. Melukis gambar rajah.

7. Menyelesaikan masalah kecil terlebih dahulu.

9. Bekerja dari bawah/belakang/menggunakan maklumat terakhir terlebih dahulu.

Page 12: Pelbagai strategi terkini 16 mei 2013

17. Mental aritmetik

Pelbagai Strategi Penyelesaian Masalah

10. Guna formula

11. Guna analogi/ perbandingan

12. Lakonan/ ujikaji

13. Mempermudahkan masalah

14. Menaakul secara mantik

15.Membuat anggaran

16.Pengabadian nombor

Page 13: Pelbagai strategi terkini 16 mei 2013

Letakkan nombor-nombor 1, 2, 3, 4, 5, 6, 7, 8 dan 9 dalam petak 3 × 3 supaya jumlah setiap pasangan tiga nombor sentiasa sama.

Contoh 1:

2 94

7 536 18•Strategi: cuba jaya•Tambah, Jumlahkan kesemua nombor dan bahagi

dengan 3, guna bentuk lazim.•Tambah dangan cari padanan 3 nombor jumlahnya 15, cari

pasangan nombor yang boleh jadi 10 dulu.•Nombor besar tidak boleh letak bersebelahan.

Pelbagai Strategi Penyelesaian Masalah

Page 14: Pelbagai strategi terkini 16 mei 2013

Contoh 1: Apakah nombor apabila dibahagi dengan 2, 3 dan 4, bakinya tetap 1.

1. Cuba jaya

Contoh 2: Dalam kebun Pak Abu ada kambing dan ayam di mana terdapat 20 kepala dan 50 kaki binatang ternakan kesemuanya. Berapa ekorkah kambing dan ayam dalam kebun Pak Abu?

Page 15: Pelbagai strategi terkini 16 mei 2013

Contoh 1: 13, 25, 37…

1. Cuba jaya

Contoh 2:

x + y = 20 2x + 2y = 40 (1) 2x + 4y = 50 (2)(2) – (1) = 2y = 10 y = 5 x = 15

Page 16: Pelbagai strategi terkini 16 mei 2013

Contoh:

Siew Li menyimpan RM3 pada hari Isnin. Selepas itu, tiap-tiap hari berikutnya dia menyimpan wang sebanyak 2 kali ganda. Berapakah wang yang dia simpan pada hari Jumaat?

2. Membina senarai/jadual /carta yg sesuai

Hari Jumlah duit simpan

Isnin RM3

Selasa RM6

Rabu RM12

Khamis RM24

Jumaat RM48

Page 17: Pelbagai strategi terkini 16 mei 2013

3. Mengenal pasti kemungkinan-kemungkinan

Contoh:

Johan ingin menggunakan seutas dawai yang panjangnya 24 cm untuk membentuk satu rangka segiempat dengan luas yang maksimum. Apakah panjang dan lebar bentuk segi empat itu?

Page 18: Pelbagai strategi terkini 16 mei 2013

3. Mengenal pasti kemungkinan-kemungkinan

Contoh:

6

66 6

6 × 6 =36

8

44 8

10

2210

7

55 7

9

33 9

11

1111

Page 19: Pelbagai strategi terkini 16 mei 2013

4. Menggunakan algebra

Jumlah harga sehelai baju dan sehelai seluar pendek ialah RM50. Emak telah membeli 3 helai baju dan 2 helai seluar pendek. Dia telah membayar RM120. Berapakah harga untuk sehelai baju dan sehelai seluar pendek?

Contoh:

Page 20: Pelbagai strategi terkini 16 mei 2013

4. Menggunakan algebra

x + y = RM50 (1)

3x + 2y = RM120 (2)(2) – 2 (1) = RM120 – RM100 x = RM20 y = RM30

Penyelesaian:

Page 21: Pelbagai strategi terkini 16 mei 2013

5. Mengenal pasti pola

Contoh 1 :Apakah 4 nombor seterusnya untuk urutan nombor di bawah:

1, 3, 6, 10, 15, …

Contoh 2 : Diberi senarai nombor berpola 2, 9, 16, 23, …, tentukan kedudukan nombor 58.

Page 22: Pelbagai strategi terkini 16 mei 2013

5. Mengenal pasti pola

Contoh 1 :

1, 3, 6, 10, 15, 21, 28, 36, 45

Contoh 2 :2, 9, 16, 23, 30, 37, 44, 51, 58

Page 23: Pelbagai strategi terkini 16 mei 2013

1. Memahami Masalah: hendak cari apa?4 nombor selepas 15

matematik operasi tambah, dan menyemaknya dari belakang ke depan

4. Menyemak jawapan: Guna operasi tolak untuk semak ayat

28 + 8 = 36, 36 + 9 = 45nombor baru ialah: 15 + 6 = 21, 21 + 7 = 28,

3. Melaksanakan strategi: •1+2 =3 (bermula dengan 1, tambah 2 dapat 3)•3+3=6 (bermula dengan 3, tambah 3 dapat 6)•6+4=10 (bermula dengan 6, tambah 4 dapat 10)•10+5=15 (bermula dengan 10, tambah 5 dapat 15)

2. Merancang Strategi: bagaimana menyelesaikan masalah ini – lihat pola nombor dalam urutan nombor–nombor baru bergantung pada nombor sebelumnya.

Strategi:

Page 24: Pelbagai strategi terkini 16 mei 2013

Raman ada 3 biji guli hijau, 5 biji guli biru, 4 biji guli merah.

1)Jika dia ingin mengumpulkan 2 biji guli yang

berlainan warna dalam satu kumpulan. Berapakah bilangan kumpulan yang maksimum dia akan dapat?

2)Jika dia ingin mengumpulkan 3 biji guli dalam

satu kumpulan di mana 2 biji guli adalah sama warna. Berapakah bilangan kumpulan yang maksimum dia akan dapat?

6. Melukis gambar rajah

Contoh:

Page 25: Pelbagai strategi terkini 16 mei 2013

*

Jawapan soalan 1 : 6Jawapan soalan 2 : 4

6. Melukis gambar rajah

Page 26: Pelbagai strategi terkini 16 mei 2013

Dalam sebuah kedai buku, harga 3 batang pen ialah RM3 dan harga untuk 4 buah kotak pensel ialah RM14. Jika pekedai telah menjual 23 batang pen dan 17 buah kotak pensel, berapakah jumlah wang yang dia perolehi?

7. Menyelesaikan masalah kecil terlebih dahulu

Contoh:

Page 27: Pelbagai strategi terkini 16 mei 2013

RM3 ÷ 3 = RM1 RM14 ÷ 4 = RM3.5023 × RM1 = RM2317 × RM3.50 = RM59.50

RM23 + RM59.50 = RM82.50

7. Menyelesaikan masalah kecil terlebih dahulu

Contoh penyelesaian :

Page 28: Pelbagai strategi terkini 16 mei 2013

Saya ialah bentuk 3D. Saya terbentuk daripada 9 garis lurus.Cuba teka apakah saya?

8. Guna Model

Contoh:

Page 29: Pelbagai strategi terkini 16 mei 2013

8. Guna Model

Contoh:

Page 30: Pelbagai strategi terkini 16 mei 2013

Jack memandu kereta dari bandar A ke Bandar C. Dia mengambil masa selama 1 jam 25 minit memandu dari Bandar A ke Bandar B, kemudian dari Bandar B ke Bandar C mengambil masa 25 minit. Dia tiba di Bandar C pada pukul 2: 35 p.m. Bilakah Jack meninggalkan Bandar A?

9. Bekerja dari belakang

Contoh 1:

Page 31: Pelbagai strategi terkini 16 mei 2013

2: 35 p.m – 25 minit - 1 jam 25 minit = 12: 45 p.m.

9. Bekerja dari belakang

Contoh penyelesaian:

Page 32: Pelbagai strategi terkini 16 mei 2013

9. Bekerja dari belakang

Contoh 2:

Ibu membeli epal untuk tiga orang anak. Anak pertama membahagikan epal itu kepada tiga bahagian yang sama banyak dan mengambil satu bahagian daripadanya. Kemudian, anak kedua membahagikan epal yang tinggal itu kepada tiga bahagian yang sama banyak dan mengambil satu bahagian daripadanya. Selepas itu, anak ketiga juga membahagikan epal itu kepada tiga bahagian dan mengambil satu bahagian daripadanya. Sekarang epal yang tinggal ialah 8 biji. Emak telah membeli berapa biji epal?

Page 33: Pelbagai strategi terkini 16 mei 2013

9. Bekerja dari belakang

Contoh penyelesaian:

27

99

666

4 4

9

4

8

12

18

Page 34: Pelbagai strategi terkini 16 mei 2013

10. Guna Formula

Contoh 1: Kirakan luas bentuk 2D di bawah yang terdiri daripada 2 segitiga kaki sama dan satu segiempat sama.

2 cm4 cm

2 cm12 cm

Page 35: Pelbagai strategi terkini 16 mei 2013

10. Guna Formula

Contoh penyelesaian:

2 ( ½ × 8 × 4 ) = 324 × 4 = 16

32 + 16 = 48

Page 36: Pelbagai strategi terkini 16 mei 2013

Contoh 2 :

8000 ÷4 = 2000 4000 ÷4 = •buat perbandingan: 8000 kurang setengah jadi 4000 maka• jawapannya pun kurang setengah jadi • 1000

11. Guna Analogi

Contoh 1:

23400 + ( ) = 45600 analogi 2 + ( ) = 5 guna 5 -2 = 3 * dengan itu, 45600 – 23400 =

Page 37: Pelbagai strategi terkini 16 mei 2013

Contoh 1:

12. Melakukan ujikaji

Bolehkah 9 batang mancis membentuk 5 segitiga?

Contoh 1:

Contoh 2:

Berapakah bilangan segiempat yang maksimum boleh dibentuk dengan 9 batang mancis ?

Page 38: Pelbagai strategi terkini 16 mei 2013

Contoh 1:

12. Melakukan ujikaji

Contoh 1: 5

Contoh 2: 10

Page 39: Pelbagai strategi terkini 16 mei 2013

Contoh 1: × 100% =

13. Mempermudahkan masalah

615

Menjadikan pecahan termudah: × 100% =

Contoh 3: 40 × 80 = 3 200

Contoh 2: 1032 ÷ 4 = (1000 ÷ 4) + (32 ÷ 4) = 250 + 8 = 258

25

×

Page 40: Pelbagai strategi terkini 16 mei 2013

Contoh 1:

Pilih jawapan tanpa melakukan pengiraan.

÷ 251 = 40

14. Menaakul secara mantik

A. 100.4B. 1 004C. 10 040D. 100 400

*Tolong jelaskan sebab anda pilih jawapan itu.

Page 41: Pelbagai strategi terkini 16 mei 2013

Contoh 1:

Jika ABC × D0 =EFGH0

Maka, 251 × 40 = 10040

14. Menaakul secara mantik

Page 42: Pelbagai strategi terkini 16 mei 2013

*

Contoh 2:

Diberi 0 < x < 10 dan 0 < y < 10. Nyatakan bilangan pasangan nilai x dan y yang mungkin supaya x + y < 10

14. Menaakul secara mantik

Page 43: Pelbagai strategi terkini 16 mei 2013

*

Contoh penyelesaian: (36 pasangan)

Jika x + y < 10

maka (seperti di bawah)

1+8, 1+7, 1+6, 1+5, 1+4, 1+3, 1+2, 1+1,

2+7, 2+6, 2+5, 2+4, 2+3, 2+2, 2+1,

3+6, 3+5, 3+4, 3+3, 3+2, 3+1,

4+5, 4+4, 4+3, 4+2, 4+1,

5+4, 5+3, 5+2, 5+1,

6+3, 6+2, 6+1,

7+2, 7+1,

8+1

14. Menaakul secara mantik

Page 44: Pelbagai strategi terkini 16 mei 2013

Chee Ming ingin pergi ke pasar raya membeli barang seperti yang tercatat dalam jadual di atas. Dengan cepat dia telah buat satu anggaran wang yang perlu di bawa dan tidak kurang daripada jumlah wang yang sebenarnya. Berapa banyakkah wang anggaran yang perlu dia bawa ke pasar raya? Bagaimanakah dia membuat anggaran itu?

No. Item Harga

1. 1 tin milo RM3.10

2. 1 kilogram ikan RM9.80

3. 1 bungkus beras RM12.50

4. 2 kilogram tomato RM7.20

5. 1 buku roti RM3.20

15. Membuat anggaran

Contoh 1:

Page 45: Pelbagai strategi terkini 16 mei 2013

Contoh 1:

723 + 659 =

A. 1302 B. 1352 C. 1372 D. 1382

16. Pengabadian nombor

Contoh 2: 2354 – 1192 =A. 1162 B. 1172 C. 1052 D. 1242

Contoh 3: 4231 – 2763 =A. 1372 B. 1468 C. 2448 D. 2532

Page 46: Pelbagai strategi terkini 16 mei 2013

Contoh 1:

723 + 659 =

(7+2+3=12, 1+2=3), (6+5+9 = 20, 2+0 = 2), (3-2=1)

A. 1302 B. 1352 C. 1372 D. 1382

16. Pengabadian nombor

Contoh 2: 2354 -1192 =A. 1162 B. 1172 C. 1052 D. 1242

Contoh 3: 4231 – 2763 =A. 1372 B. 1468 C. 2448 D. 2532

Page 47: Pelbagai strategi terkini 16 mei 2013

Contoh 1: 97 + 54 =

17. Mental Aritmetik

Contoh 2: 1000 – 456 =

Contoh 3: 35 + 75 = (30 +70) + (5+5)

Contoh 4: 512 + 418 = 500 + 12 + 400 + 18

Contoh 5: penggantian nombor405 – 398 =(405+2) – (398+2)

Page 48: Pelbagai strategi terkini 16 mei 2013

Contoh 1: (97+3) + (54-3) = 100 +51 = 151

17. Mental Aritmetik

Contoh 2: 1000 – 456 = (1000-1) – (456 - 1) = 999 – 455 = 544

Contoh 3: 35 + 75 = (30 +70) + (5+5)

Contoh 4: 512 + 418 = (500 + 12) + (400 + 18) = (500 + 400) + (12 + 18) = 900 + 30 = 930

Contoh 5: penggantian nombor405 – 398 = (405 + 2) – (398 + 2) = 407 – 400 = 5

Page 49: Pelbagai strategi terkini 16 mei 2013

4.Tajuk (pecahan, perpuluhan: melukis gambar)

Bagaimanakah memilih strategi yang sesuaidan berkesan dalam penyelesaian masalah?

Ia bergantung pada:1. Jenis masalah:

Contoh: ayat matematik: 12 ÷ = 4,

Soalan pendek (masalah berayat yang ringkas), masalah berayat, masalah rutin dan masalah bukan rutin)

2.Bahan yang dibekalkan (abakus, kalkulator- guna formula, objek: susun objek)

3. Aktiviti (individu, pasangan, kumpulan: cuba jaya)

5. Tahap pencapaian murid (lemah: lukis gambar, sederhana, cergas)

Page 50: Pelbagai strategi terkini 16 mei 2013

❖Dalam fasa ini murid perlukan ketekunan dan berhati-hati.

Fasa 3: Melaksanakan Strategi

❖Guna kemahiran yang sedia ada.

❖Jika tidak berjaya menyelesaikannya, perlu patah semula ke langkah pertama dan merancang strategi berbeza.

Page 51: Pelbagai strategi terkini 16 mei 2013

❖Ambil sedikit masa untuk menyemak jawapan dan membuat refleksi.

Fasa 4: Menyemak jawapan

❖Tujuannya: mengukuhkan keyakinan dan memantapkan pengalaman untuk mencuba masalah baru.

Page 52: Pelbagai strategi terkini 16 mei 2013

Ku

ri

ku

lu

m

St

an

da

rd

S

ek

ol

ah

R

en

da

hP

en

ta

ks

ir

an

B

er

as

as

ka

n

Se

ko

la

h

KS

SR

&

P

BS

PK

ur

ik

ul

um

S

ta

nd

ar

d

Se

ko

la

h

Re

nd

ah

Pe

nt

ak

si

ra

n

Be

ra

sa

sk

an

S

ek

ol

ah

KS

SR

&

P

BS

P Terima

kasihOleh:

UNIT MATEMATIK RENDAHBAHAGIAN PEMBANGUNAN

KURIKULUMKEMENTERIAN PELAJARAN MALAYSIA

2013

*