TEMPERATUR TANAH: Perilaku dan Efeknya bagi Tanaman

103
TEMPERATUR TANAH: Perilaku dan Efeknya bagi Tanaman Bahan kajian untuk MK AGROEKOLOGI Soemarno , jrstnhfpub-oktober 2012

description

TEMPERATUR TANAH: Perilaku dan Efeknya bagi Tanaman. Bahan kajian untuk MK AGROEKOLOGI Soemarno , jrstnhfpub-oktober 2012. TEMPERATUR TANAH. Temperatur atau Suhu adalah tingkat kemampuan benda dalam memberi atau menerima panas. - PowerPoint PPT Presentation

Transcript of TEMPERATUR TANAH: Perilaku dan Efeknya bagi Tanaman

Page 1: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

TEMPERATUR TANAH:

Perilaku dan Efeknya bagi Tanaman

Bahan kajian untuk MK AGROEKOLOGISoemarno , jrstnhfpub-oktober 2012

Page 2: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

TEMPERATUR TANAH

Bahan kajian untuk MK Dasar Ilmu TanahSoemarno 2011

Temperatur atau Suhu adalah tingkat kemampuan benda

dalam memberi atau menerima panas.

Suhu seringkali juga dinyatakan sebagai energi

kinetis rata-rata suatu benda yang dinyatakan dalam derajat

suhu.

Page 3: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Suhu juga dinyatakan sebagai ukuran energi kinetik rata-rata dari pergerakkan molekul suatu benda. Suhu menunjukkan sangkar cuaca yang dipergunakan untuk pengamatan suhu. Pengukuran dilakukan dengan menggunakan thermometer air

raksa dan alkohol.

Dengan  thermometer air raksa pengukuran dapat dilakukan dari suhu 35o C – 350o C, hasilnya adalah cukup bagus karena mengingat angka pengembangan air raksa pada tiap suhu lebih merata dari alkohol, sehingga untuk pengukuran suhu udara

biasanya digunakan thermometer air raksa.

. http://reflitepe08.blogspot.com/2011/03/suhu-udara-dan-suhu-tanah.html ….. diunduh 3/2/2012

http://blkmtncommunitygarden.blogspot.com/2010/03/soil-temperature-chart-for-seed.html

Page 4: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Pentingnya temperatur tanah?

Page 5: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Temperatur tanah

Salah satu sifat fisika tanah yang sangat berpengaruh terhadap proses-proses dalam tanah, seperti pelapukan dan penguraian bahan organik dan bahan induk

tanah, reaksi-reaksi kimia , dll.

http://www.regional.org.au/au/asssi/supersoil2004/s15/oral/1502_walla.htm diunduh 15/2/2012

Example of soil moisture and temperature during and after freezing. (Gravimetrically determined θv was 11.8 % on day 0 and 11.3% on day 9.)

Soil moisture measurement in the Ross Sea region of Antarctica using Hydra soil moisture probes.

Aaron M. Wall, Megan R. Balks, Dave I. Campbell and Ron F. Paetzold

Page 6: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Faktor-faktor yang mempengaruhi suhu tanah :

1. Faktor iklim / cuaca– radiasi surya - Keawanan– Hujan - suhu udara– Angin - kelembaban udara

The soil temperature is much less influenced by climatic changes. The graph shows the variation in temperature over a year at different depths

(0, 2, 5 and 12 feet). As we can see, the temperature fluctuation decreases with increasing depth.

Sumber: http://www.enviroair.ca/en/geothermal.html..... . diunduh 12/2/2012

Page 7: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Faktor-faktor yang mempengaruhi suhu tanah :

2. Keadaan tanah– tekstur tanah– kadar air tanah– kandungan bahan organik– warna tanah– struktur tanah (pengolahan ddan

kepadatan tanah)

Depth dependence of annual range of ground temperatures in Ottawa, Canada (Williams and Gold 1976, National Research Council of Canada

2003).Sumber: http://iopscience.iop.org/1748-9326/2/4/044001/fulltext/

diunduh 12/2/2012

Page 8: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Faktor-faktor yang mempengaruhi suhu tanah :

3. Kondisi topografi– kemiringasn lereng– arah lerreng– tinggi permukaan tanah– vegetasi

Definition ofthe Temperature Vegetation Dryness Index (TVDI). TVDIfor a given pixel (NDVI,Ts) is estimated as the relation between the distance ofthe

pixel from the wet edge (TVDI=O) and the spån ofTs in the Ts/NDVI-spacefor the given NDVI (the difference between Ts and the dry edge (TVDI=I) and Ts at

the wet edge).SUMBER: http://www.tidsskrift.dk/visning.jsp?markup=&print=no&id=71866

Diunduh 12/2/2012)

Page 9: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Pentingnya temperatur tanah

1. Temperatur tanah mempengaruhi aktivitas biologi tanah---- tidak optimal apabila suhu tertentu tidak dapat dipertahankan

• Tingkat aktivitas optimum dari organisme tanah adalah suhu 18 – 30oC

• Kurang dari 10o C: menghambat perkembangan mikroba tanah dan menghambat penyerapan hara oleh akar tanaman

• Lebih dari 40oC : mikroba tanah tidak aktif, kecuali mikroorganisme tertentu (termofilik).

Page 10: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

PENTINGNYA TEMPERATUR TANAH

2. Temperatur tanah juga menentukan reaksi kimia dan aktivitas mikroba tanah yang dapat merombak senyawa organik tertentu menjadi hara tersedia.

• Proses nitrifikasi ( temperatur optimum ± 30o C ), yaitu pada kondisi agak panas

http://info.cycadpalm.com/bid/57663/How-to-Fertilize-Cycads-Part-2 diunduh 15/2/2012

Page 11: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Pentingnya temperatur tanah

3. Temperatur tanah juga mempengaruhi pelapukan bahan induk tanah

4. Temperatur tanah mempengaruhi perkembangan akar, karena ada hubungannya dengan kelengasan dan aerasi tanah

5. Temperatur tanah mempengaruhi pekecambahan biji dan pertumbuhan kecambah

Effect of soil temperature on nitrate formation (adapted from Fredereick and Broadbent, 1966).

http://www.ipm.iastate.edu/ipm/icm/2001/10-22-2001/why50.html … diunduh 15/2/2012

Page 12: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Pentingnya temperatur tanah

pertumbuhan tanaman tertentu (jenis berbeda) menghhendaki keadaan temperatur yang cocok.

http://www.cropinfo.net/AnnualReports/2003/YNSResponsetoEnvironment03.htm.... .. Diunduh 12/2/2012

Page 13: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

SUHU TANAH BAGI CACING

Suhu atau temperatur tanah yang ideal untuk pertumbuhan cacing tanah dan penetasan kokonnya berkisar antara 15oC – 25oC.

Suhu tanah yang lebih tinggi dari 25oC masih cocok untuk cacing tanah, tetapi harus

diimbangi dengan kelembapan yang memadai dan naungan yang cukup.

Oleh karena itu, cacing tanah biasanya ditemukan hidup dibawah pepohonan atau

tumpukan bahan organik.

http://biologi.lkp.web.id/?p=604 diunduh 3/2/2012

Page 14: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Dimana suhu tanah diukur?

Page 15: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Termometer Tanah

• Used to take temperatures at 5 and 10 cm depths

PVC Spacer

PVC Spacer

Page 16: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Kalibrasi Termometer tanah

Basically, we compare the soil thermometer to a calibration thermometer, and adjust the soil thermometer.

First, we need to check the calibration thermometer!!

…by dipping it in an ice bath.

Page 17: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Checking Calibration Thermometer

• Submerge thermometer in ice-water bath

• Let sit for 10-15 minutes, stirring thermometer occasionally

• Read the thermometer. If it reads between -0.5° C and +0.5° C, the thermometer is fine.

• If the thermometer reads greater than +0.5° C, check to make sure that there is more ice than water in your ice-water bath.

• If the thermometer reads less than -0.5° C, check to make sure that there is no salt in your ice-water bath.

Page 18: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Kalibrasi Termometer Tamah

• Add the soil thermometer to the ice bath• Wait 2 minutes• Read both Soil Thermometer and

calibration thermometer.• If they agree to within ±2° C, the soil

thermometer is ready to use.• If not adjust the soil thermometer, using

a wrench, until it reads with ±2° C of the calibration thermometer

Page 19: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Kapan mengukur suhu tanah ?

• Soil temperature is a weekly measurement, but you can do it daily.

• Try to do the measurement at about the same time of day

• Take data near the atmosphere station or near the soil moisture site

• Also measure soil temperature measurement whenever a soil moisture data are taken

• Seasonally (4 times a year), measure soil temperature every few hours during the day for 2 consecutive days – provides a diurnal reading of soil

temperature change– diurnal sampling in March, June, Sept. and

Dec. are preferred

Page 20: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Regim Temperatur Tanah ---

Regim temperatur

tanah

RTTT RTTMP-RTTMD

RTTMP

PergelikCryikFrigid

IsofrigidBorealMesik

IsomesikTermik

IsotermikHipertermik

Isohipertermik

< 00 – 80 – 80 – 8< 8

8 – 158 – 1515 – 2215 – 22

> 22> 22

> 5< 5> 5<5>5< 5> 5< 5

Rendah

> cryic

Page 21: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Estimasi temperatur berdasarkan ketinggian tempat (elevasi)

Di tempat-tempat yang tidak tersedia data temperatur (stasiun iklim terbatas), maka

temperatur udara dapat diduga berdasarkan ketinggian tempat (elevasi) dari atas

permukaan laut. Pendugaan tersebut dengan menggunakan pendekatan rumus dari Braak

(1928) dalam Mohr et al. (1972).

Berdasarkan hasil penelitiannya di Indonesia temperatur di dataran rendah (pantai) berkisar

antara 25-27ºC, dan rumus yang dapat digunakan (rumus Braak) adalah sebagai

berikut:

26,3°C - (0,01 x elevasi dalam meter x 0,6°C)

Page 22: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Berdasarkan penelitian Braak tersebut temperatur tanah pada kedalaman 50 cm di

Indonesia lebih tinggi 3-4,5ºC, sehingga untuk menduga temperatur tanah pada kedalaman 50

cm, maka rerata temperatur udara ditambah sekitar 3,5ºC.

Menurut Wambeke et al. (1986) temperatur tanah lebih tinggi 2,5ºC dari temperatur udara.

Hasil pendugaan temperatur dan ditambah perbedaan temperatur udara dan temperatur tanah tersebut digunakan untuk menentukan

rejim temperatur tanah seperti yang ditetapkan dalam Taksonomi Tanah

(Soil Survey Staff, 1992; 1998).

Page 23: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

RADIASI MATAHARIPermukaan bumi merupakan penyerap utama radiasi

matahari . Oleh sebab itu permukaan bumi merupakan sumber panas bagi udara di atasnya dan bagi lapisan

tanah di bawahnya.

Pada siang hari suhu permukaan tanah akan lebih tinggi dibandingkan dengan suhu pada lapisan tanah

yang lebih dalam. Permukaan tanah menyerap radiasi matahari secara

langsung pada siang hari, setelah itu panas merambat ke lapisan tanah yang lebih dalam.

Sebaliknya pada malam hari permukaan tanah akan kehilangan panas terlebih dahulu, akibatnya suhu pada

permukaan tanah akan lebih rendah dibandingkan dengan suhu pada lapisan yang lebih dalam. Pada malam hari panas akan merambat dari lapisan yang

lebih dalam menuju permukaan.

Sumber: STUDI DIFUSIVITAS TERMAL PADA MEDIUM TANAH MELALUI PENGUKURAN SUHU.  Aries Astradhani

Subgan. Natural, Oktober 2006. Vol 5. No.2

Page 24: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

PERPINDAHAN PANAS

Proses perpindahan panas yang terjadi di dalam tanah adalah perpindahan panas

secara konduksi.

Proses perpindahan panas ini terjadi karena adanya gerakan molekul dalam

tanah.

Temperatur adalah suatu pernyataan tentang kinetik energi molekul benda, adanya suatu beda

suhu di dalam suatu benda umumnya akan menyebabkan perpindahan energi kinetik oleh

banyaknya tumbukan dari molekul-molekul yang bergerak dari daerah yang lebih panas ke daerah

sekitarnya yang lebih dingin.

Sumber: STUDI DIFUSIVITAS TERMAL PADA MEDIUM TANAH MELALUI PENGUKURAN SUHU.  Aries Astradhani

Subgan. Natural, Oktober 2006. Vol 5. No.2

Page 25: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

TRANSFER PANASProses stedi (steady;) atau proses takstedi

(unsteady) terjadi dalam proses transfer panas.

Bilamana laju aliran panas dalam suatu sistem tidak berubah dengan waktu (konstan), maka suhu dititik manapun tidak berubah. Hal ini

yang dikatakan kondisi keadaan-stedi.

Dengan kondisi keadaan-stedi (steady state), kecepatan fluks-masuk pada titik manapun

dari sistem manapun harus tepat sama dengan kecepatan fluks-keluar, dan tidak dapat terjadi perubahan energi-dalam. Aliran panas dalam

suatu sistem takstedi terjadi bila suhu diberbagai titik dari sistem tersebut berubah

dengan waktu. Sumber: STUDI DIFUSIVITAS TERMAL PADA MEDIUM

TANAH MELALUI PENGUKURAN SUHU.  Aries Astradhani Subgan. Natural, Oktober 2006. Vol 5. No.2

Page 26: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Dengan adanya perubahan suhu, maka akan terjadi perubahan energi dalam.

Perubahan kandungan panas dari sebuah permukaan tanah antara permukaan Z1 = 0 dan beberapa

kedalaman Z2 diberikan oleh : AS = - (qh2 – qh1) ≈

Dimana qh positif ke arah bawah

zz

qh

Sumber: STUDI DIFUSIVITAS TERMAL PADA MEDIUM TANAH MELALUI PENGUKURAN SUHU.  Aries Astradhani Subgan. Natural,

Oktober 2006. Vol 5. No.2

http://www.texas-geology.com/

ac_heat_pumps.html

Page 27: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

KERAPATAN FLUX PANAS

Kerapatan fluks panas tanah positif arah bawah ketika ΔS = - (qh2 - qh1) positif, maka lebih banyak panas yang masuk di bagian atas

daripada yang meninggalkan bagian bawah lapisan tanah sehingga tanah menjadi panas.

Jika ΔS = - (qh2 - qh1) negatif, maka lebih banyak panas yang keluar daripada yang

masuk ke permukaan sehingga tanah menjadi dingin.

Sumber: STUDI DIFUSIVITAS TERMAL PADA MEDIUM TANAH MELALUI PENGUKURAN SUHU.  Aries Astradhani

Subgan. Natural, Oktober 2006. Vol 5. No.2

Page 28: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

TRANSFER PANASTeori transfer panas dalam tanah telah digunakan untuk

menentukan sifat-sifat termal rata-rata dari regim suhu yang diamati, juga untuk pendugaan perubahan harian dan musiman suhu tanah. di alam, tanah yang homogen hanya terdapat pada

lapisan-lapisan yang tipis, sehingga suhu tanah umumnya bukanlah fungsi sinus sederhana.

Sumber: STUDI DIFUSIVITAS TERMAL PADA MEDIUM TANAH MELALUI PENGUKURAN SUHU.  Aries Astradhani Subgan. Natural,

Oktober 2006. Vol 5. No.2

Amplitude of seasonal soil temperature

change as a function of depth below ground

surface.

http://www.builditsolar.com/

Projects/Cooling/EarthTemperatures.htm

Page 29: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24Waktu Pengamatan Waktu Per 30 Menit

Grafik Fungsi Fourier Suhu Tanah Bervegetasi Tiap Kedalaman

Z=0 Cm

Z=5 Cm

Z=10 Cm

Z=15 Cm

Z=20 Cm

Z=25 Cm

Suhu

Tanah (0C)

Sumber: STUDI DIFUSIVITAS TERMAL PADA MEDIUM TANAH MELALUI PENGUKURAN SUHU.  Aries Astradhani

Subgan. Natural, Oktober 2006. Vol 5. No.2

Page 30: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Grafik Fungsi Fourier Suhu Tanah Tidak Bervegetasi Tiap Kedalaman

19202122232425262728293031323334353637383940414243444546

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24Waktu Pengamatan Waktu Per 30 Menit

Z=0 Cm Z=5 Cm Z=10 Cm Z=15 Cm Z=20 Cm Z=25 Cm

Suhu

Tanah (0C)

Sumber: STUDI DIFUSIVITAS TERMAL PADA MEDIUM TANAH MELALUI PENGUKURAN SUHU.  Aries Astradhani

Subgan. Natural, Oktober 2006. Vol 5. No.2

Page 31: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

TEMPERATUR TANAH

Temperatur (suhu) adalah salah satu sifat tanah yang sangat penting secara langsung mempengaruhi pertumbuhan tanaman dan juga terhadap kelembapan, aerasi, stuktur,

aktifitas mikroba, dan enzimetik, dekomposisi serasah atau sisa tanaman dan ketersidian

hara-hara tanaman.

Tenperatur tanah merupakan salah satu faktor tumbuh tanaman yang penting sebagaimana

halnya air, udara dan unsur hara. Proses kehidupan bebijian, akar tanaman dan mikroba

tanah secara langsung dipengaruhi oleh temperatur tanah

 Hanafiah, Kemas Ali. 2005. Dasar-dasar Ilmu Tanah. PT. Radja Grifindo. Persada. Jakarta.

Page 32: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

FAKTOR SUHU TANAHTentang suhu tanah pengaruhnya penting sekali pada kondisi tanah itu sendiri dan

pertumbuhan tanaman. Pengukuran dari suhu tanah biasanya dilakukan pada kedalaman 5

cm, 10 cm, 20 cm, 50 cm, dan 100 cm.

Faktor pengaruh suhu tanah yaitu faktor luar dan faktor dalam.

Faktor luar yaitu radiasi matahari, awan, curah hujan, angin, kelembapan udara. Faktor

dalamnya yaitu faktor tanah, struktur tanda, kadar iar tanah, kandungan bahan organik, dan warna tanah. Makin tinggi suhu maka semakin

cepat pematangan pada tanaman  

Kartasapoetra, dkk. 2005. Teknologi Konservasi Tanah. Rineka jaya. Jakarta.

Page 33: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

FLUKTUASI SUHU TANAH

Suhu tanah beraneka ragam dengan cara khas pada perhitungan harian dan musiman.

Fluktasi terbesar dipermukaan tanah dan akan berkurang dengan bertambahnya kedalaman

tanah.

Kelembapan waktu musiman yang jelas terjadi, karena suhu tanah musiman lambat bantuk fluktasi suhu pada peralihan suhu

diudara atau dibawah tanah yang lebih besar. Suhu total untuk semalam tanaman mungkin

terjadi pada tengah hari.

Dibawah 6 inch atau 15 inch terdapat variasi harian pada suhu tanah  

Sosrodorsono. 2006. Variasi Tanah. Rineka Jaya. Bogor.

Page 34: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

TEMPERATUR TANAH

Data temperatur tanah dapat dilihatpada Tabel 4 menunjukkan bahwa suhuharian pada permukaan tanah sangat

fluktuasi dengan pola mendekati fungsisinusoidal.

Fluktuasi temperatur permukaan tanah dipengaruhi oleh perubahan suhu atmosfir di

atas permukaan tanah.

Temperatur tanah pada pagi hari relatif kecil, temperatur tanah pada pagi hari di lahan

naungan cenderung lebih tinggi daripada di areal lahan tanpa naungan.

PENGARUH IRIGASI DAN NAUNGAN TERHADAP PRODUKSI TANAMAN CABE (Capsicum annum) PADA LAHAN BERPASIR

DI PANTAI GLAGAH, YOGYAKARTAIkhwanuddin Mawardi dan Sudaryono. 2008. J. Hidrosfir Indonesia Vol. 3(1) :

41 -49

Page 35: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

SUHU TANAH - KEDALAMAN

Pada variasi kedalaman yaitupermukaan tanah, kedalaman 10 cm, 20cm dan 30 cm, untuk temperatur tanah

dalam naungan memiliki temperatur yangtertinggi, sedangkan kedalaman 10 cmmempunyai temperatur tanah terendah.

Hal ini disebabkan pada pagi haripermukaan tanah telah menerima

pancaran radiasi matahari, tetapi transferpanas belum mencapai kedalaman 10

cm.Temperatur tanah pada kedalaman 30 cmlebih tinggi dibandingkan kedalaman 10

cm dan 20 cm, karena masih menyimpansebagian energi radiasi matahari yang

diterima sehari sebelumnya.

Page 36: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

SUHU TANAH – SIANG AHRI

Temperatur tanah pada siang hari, jikadilihat pada tabel tersebut dapat dilihatbahwa temperatur tanah pada sing harilebih panas daripada temperatur tanah

pada pagi hari.

Hal ini dapat terjadi karena pada siang hari radiasi yang diterima oleh permukaan tanah lebih besar.

Temperatur tanah pada siang hari di areal lahan dengan memakai naungan lebih tinggi daripada lahan yang tidak

memakai naungan.

Page 37: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

SUHU TANAH - LAPISAN TANAH

Berdasarkan variasi kedalaman, makapermukaan tanah mempunyai temperaturtanah tertinggi, sedangkan kedalaman 30

cm mempunyai temperatur tanahterendah.

Jadi pada siang hari temperaturpermukaan tanah akan lebih tinggi jikadibandingkan temperatur pada lapisan

tanah yang lebih dalam.

Hal ini disebabkan karena permukaan tanah menyerap radiasi matahari secara

langsung, baru kemudian panasdirambatkan ke lapisan tanah yang lebih

dalam secara konduksi.

Page 38: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

SUHU TANAH - KEDALAMAN

Temperatur tanah pada sore hari akanlebih kecil dibandingkan dengan

temperatur tanah pada pagi dan sianghari. Temperatur tanah dalam naungan

lebih tinggi daripada di areal lahan tanpanaungan.

Berdasarkan variasi kedalaman,pada kedalaman 10 cm mempunyai

temperatur tanah tertinggi sedangkankedalaman 30 cm memiliki temperatur

tanah terendah.

Tingginya temperaturtanah pada kedalaman 10 cm dapat

disebabkan oleh akumulasi transfer panasdari permukaan atau tingginya aktivitas

mikroorganisme dalam merombak bahanorganik pada lapisan tersebut.

Page 39: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

FLUKTUASI SUHU TANAH

Bila dilihat dari hasil pengamatanselama 3 bulan, baik itu pagi, siang dan

sore hari terlihat temperatur tanahberfluktuasi, dan cenderung lebih stabil

seiring dengan bertmbahnya umurtanaman.

Fluktuasi temperatur padapermukaan tanah lebih besar daripada

kedalaman 10 cm, 20 cm dan 30 cm. Halini tidak terlepas dari pengaruh intensitas

radiasi matahari yang diterima olehpermukaan tanah.

Jadi intensitas radiasi matahari yang berfluktuasi akan menyebabkan temperatur tanah juga

berfluktuasi.

Page 40: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Alison L. SpongbergKevin P. Czajkowski

Jason Witter

University of Toledo

Page 41: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman
Page 42: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman
Page 43: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Soil temperatures over three days at different depths.Sumber:

http://www.learner.org/jnorth/tm/tulips/SoilTempBack.html..... diunduh 12/2/2012

Page 44: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Our goal at UT:

Study temporal and spatial relationships between soil temperature

and various factors• Diurnal and seasonal variation

• Modify current protocol• Other latitudes 2-5 years

Study global energy flux.

We need soil temperature variations throughout the year, without the confounding influence of diurnal

variations.

Could we arrive at an algorithm to determine soil temperature at depth from the shallow measurements?

Page 45: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

15 Field Sites

2-4 week intervals since 12/2002. Collected within 3 hours of Solar Noon. Each site same time every collection when possible Collected to 1 meter depth at 10cm intervals

Temperature (Air and surface included) Wind Speed (1 min average)Moisture (surface also)pH Soil texture Land Cover, Shade Conditions

Cloud CoverSnow/IceWater Table

Page 46: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Automated Data Collection

Temperature (10, 20, 30, 40, 50, 60, 80, 100cm) 4 channel HOBO External Dataloggers

4 sites: 2 clay soils (Lake Erie Center), 2 sandy soils (Stranahan Arboretum)Each has 1 open site and 1 forested site. Collects every 2.5 minutes since September 2003

Soil texture and pH

Page 47: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

The R. A. Stranahan Arboretum, University of Toledo

47 acre property- ponds, forest, prairie, wetland, and open areas.

Sandy Soils (Bixler, Lamsom) Sisson Loam dunes formed from paleo-lake

shorelines.

Yellow Dots Represent Sites. 13, 9, and LEC are

also data-logger sites.

Page 48: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Local Climate/Ground Cover

Page 49: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman
Page 50: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman
Page 51: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Left: cyclic nature of yearly temp and turnover dates is

generalized here.

Below left: annual change with depth.

Below right: relationship between

soil moisture and temperature decreases

with depth.

Page 52: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Temperature Profile for Several Sites showing spatial variation of temperature during two collection dates in the

coldest and warmest months for surface temperature in 2003.

Page 53: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Soil Texture -Particle Size Analysis

Page 54: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Soil Texture

Soil moisture at shallower depths

Water flow though the soil

Cloud cover

Land cover

Page 55: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Suhu Tanah

• Relation of Soil & Air Temp– Net heat absorbed by the Earth =

heat lost in form of longwave radiation

– Photoperiod – affected by latitude

– Soil temp can change by soil depth & time of day

• Takes significant air temp changes to change soil temp deeper than 12” (& more than just daily range)

Page 56: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Suhu Tanah

• Avg. summer & winter soil temps @ 3’ rarely differ by more than 9° F.

• Factors Affecting Soil Temp– How much heat reaches the soil

surface• Tutupan muka tanah• Mulsa plastik• Sudut datang radiasi matahari• Arah Muka Lereng• Tanah

Page 57: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Suhu Tanah

– What happens to the heat in the soil (dissipation)

• Amount of heat needed to change soil temp = heat capacity

– Greatly affected by soil water content

» How?

– Thermal conductivity – increases w/ soil-water content increasing, decreases as air-filled pores increase

• Moist soils resist temp change, but conduct heat readily

• Dry soils change temp faster, but conduct heat poorly

– What does this mean for the soil, which is better?

Page 58: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Suhu Tanah

• Living w/ Existing Temps– Maximizing seed germination

& growth• Wheat – 40 to 50° F• Corn – 50 to 85° F

– When using anhydrous• Apply when soil temp @ 4” is

50° F or less– Mereduksi kehilangan N

– Freeze/thaw• May cause heaving – resulting

in death of shallow rooted crops

Page 59: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Suhu tanah

– Responsible for bringing stones to the surface in fields

• Modifying Temp Effects– If you have crops that are

feasible/profitable to do so– Clear plastic surface covers

• Increases soil temp faster

– Clear plastic mulches• Can speed growth & maturity of

sweet corn & strawberries

Page 60: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

CIRI THERMAL TANAH

The thermal properties of soil are a component of soil physics that has found

important uses in engineering, climatology and agriculture.

These properties influence how energy is partitioned in the soil profile. While related to

soil temperature, it is more accurately associated with the transfer of heat throughout

the soil, by radiation, conduction and convection.

The main soil thermal properties are:Volumetric heat capacity, SI Units: J.m-3∙K-1

Thermal conductivity, SI Units: W.m-1∙K-1

Thermal diffusivity , SI Units: m2∙s-1

. http://en.wikipedia.org/wiki/Soil_thermal_properties ….. Diunduh 4/2/2012

Page 61: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

SUHU TANAH dipengartuhi oleh:

Latitude; seasonnet radiation at the surface

soil texture ; moisture contentground cover

surface weather conditions

. http://en.wikipedia.org/wiki/Soil_thermal_properties ….. Diunduh 4/2/2012

Page 62: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

CIRI-CIRI THERMAL TANAH

So, in order to determine the skin temperature of the soil, it is important to understand how

heat is transferred upward and and downward through the soil.  The important heat transfer

mechanism in this problem is conduction. Then, the ground heat flux at any depth in the

soil can be given as:

where kg is the thermal diffusivity of the soil.

http://apollo.lsc.vsc.edu/classes/met455/notes/section6/2.html .... diunduh 5/2/2012

Page 63: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Using the Second Law of Thermodynamics, show that a prognostic equation for the soil temperature can be

given by:    

(2)

where Cg is the soil heat capacity (Cg = soil density, r, times the soil specific heat, c)combining (2) with (1) yields:

  (3)

where vg = kg/Cg = soil thermal diffusivity.

Given proper boundary conditions, (3) can be solved to find the soil temperature at different levels as a function of time.  With appropriate boundary conditions, solutions to (3) show that soil

temperature decreases exponentially with depth and that the phase of the temperature changes with depth as well, consistent

with the figures shown above.

http://apollo.lsc.vsc.edu/classes/met455/notes/section6/2.html .... diunduh 5/2/2012

Page 64: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Typical values of the mass density, specific heat, thermal conductivity and thermal diffusivity for

different materials

http://apollo.lsc.vsc.edu/classes/met455/notes/section6/2.html ..... Diunduh 6/2/2012

MATERIAL

CONDITION

MASS DENSITY (r) (kg m-3 x 103)

SPECIFIC HEAT (c) (J

kg-1 K-1 x 103)

THERMAL CONDUCTIVITY (kg) (W m-2

K-1)

THERMAL DIFFUSIVITY

(vg) (m2 s-1 x10-6)

Air20 Deg C, Still

0.0012 1.01 0.025 20.5

Water20 Deg C, Still

1.00 4.19 0.57 0.14

Ice0 Deg C,

Pure0.92 2.10 2.24 1.16

Snow Fresh 0.10 2.09 0.08 0.38

Snow Old 0.48 2.09 0.42 0.05

Sandy Soil

Fresh 1.60 0.80 0.30 0.24

Clay Soil

Dry 1.60 0.89 0.25 0.18

Peat Soil

Dry 0.30 1.92 0.06 0.10

Rock Solid 2.70 0.75 2.90 1.43

Page 65: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

FLUKTUASI SUHU TANAH

Soil temperature variations decrease exponentially with depth.  only small

fluctuations are observed at depths of about 1 meter. much smaller fluctuations are observed

at depths of 10 meters.

http://apollo.lsc.vsc.edu/classes/met455/notes/section6/2.html ..... Diunduh 6/2/2012

Page 66: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

KAPASITAS PANAS VOLUMETRIK

Volumetric heat capacity (VHC), also termed volume-specific heat capacity,

describes the ability of a given volume of a substance to store internal energy while

undergoing a given temperature change, but without undergoing a phase change.

It is different from specific heat capacity in that the VHC depends on the volume of the material, while the specific heat is based on the mass of the material (or occasionally the

molar quantity of the material).

If given a specific heat value of a substance, one can convert it to the VHC by multiplying

the specific heat by the density of the substance.

http://en.wikipedia.org/wiki/Volumetric_heat_capacity … diunduh 5/2/2012

Page 67: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

KAPASITAS PANAS

Dulong and Petit predicted in 1818 that the product of solid substance density and specific heat capacity

(ρcp) would be constant for all solids. This amounted to a prediction that volumetric heat capacity in solids

would be constant.

This quantity was proportional to the heat capacity per atomic weight (or per molar mass), which suggested that it is the heat capacity per atom (not per unit of

volume) which is closest to being a constant in solids.

Eventually (see the discussion in heat capacity) it has become clear that heat capacities per particle for all

substances in all states are the same, to within a factor of two, so long as temperatures are not in the

cryogenic range. For very cold temperatures, heat capacities fall

drastically and eventually approach zero as temperature approaches zero.

http://en.wikipedia.org/wiki/Volumetric_heat_capacity … diunduh 5/2/2012

Page 68: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

KAPASITAS PANAS VOLUMETRIK.

The heat capacity on a volumetric basis in solid materials at room temperatures and above varies more

widely, from about 1.2 to 4.5 MJ/m³K, but this is mostly due to differences in the physical size of

atoms.

If all atoms were the same size, molar and volumetric heat capacity would differ by a single constant reflecting ratios of the atomic-molar-volume of

materials (their atomic density), plus an additional number between 1 and 2 which reflects degrees of

freedom for the atoms compositing the substance at various temperatures.

For liquids, the volumetric heat capacity is narrower: in the range 1.3 to 1.9 MJ/M³k.

This reflects the modest loss of degrees of freedom for particles in liquids as compared with solids.

http://en.wikipedia.org/wiki/Volumetric_heat_capacity … diunduh 5/2/2012

Page 69: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

KAPASITAS PANAS VOLUMETRIK

Since the bulk density of a solid chemical element is strongly related to its molar mass (usually about 3 R per mole, as noted above), there exists noticeable inverse

correlation between a solid’s density and its specific heat capacity on a per-mass basis. This is due to a very

approximate tendency of atoms of most elements to be about the same size, despite much wider variations in

density and atomic weight. These two factors (constancy of atomic volume and constancy of mole-specific heat

capacity) result in a good correlation between the volume of any given solid chemical element and its total heat

capacity. Another way of stating this, is that the volume-specific heat capacity (volumetric heat capacity) of solid

elements is roughly a constant. The molar volume of solid elements is very roughly

constant, and (even more reliably) so also is the molar heat capacity for most solid substances. These two factors

determine the volumetric heat capacity, which as a bulk property may be striking in consistency.

For example, the element uranium is a metal which has a density almost 36 times that of the metal lithium, but

uranium's volumetric heat capacity is only about 1.2 times larger than lithium's.

http://en.wikipedia.org/wiki/Volumetric_heat_capacity … diunduh 5/2/2012

Page 70: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

.KONDUKTIVITAS THERMAL

Thermal conductivity, k, is the property of a material's ability to conduct heat. It appears

primarily in Fourier's Law for heat conduction.

Heat transfer across materials of high thermal conductivity occurs at a higher rate than

across materials of low thermal conductivity. Correspondingly materials of high thermal conductivity are widely used in heat sink applications and materials of low thermal

conductivity are used as thermal insulation.

Thermal conductivity of materials is temperature dependent. The reciprocal of thermal conductivity is thermal resistivity.

http://en.wikipedia.org/wiki/Volumetric_heat_capacity … diunduh 5/2/2012

Page 71: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

SUHU TANAH - MUSIMAN

Soil temperature varies from month to month as a function of incident solar radiation, rainfall, seasonal swings in overlying air temperature, local vegetation cover, type of soil, and depth in the

earth.

Due to the much higher heat capacity of soil relative to air and the thermal insulation provided by vegetation and surface soil

layers, seasonal changes in soil temperature deep in the ground are much less than and lag significantly behind seasonal changes

in overlying air temperature.

Thus in spring, the soil naturally warms more slowly and to a lesser extent than the air, and by summer, it has become cooler than the overlying air and is a natural sink for removing heat

from a building. Likewise in autumn, the soil cools more slowly and to a lesser extent than the air, and by winter it is warmer than

the overlying air and a natural source for adding heat to a building.

At soil depths greater than 30 feet below the surface, the soil temperature is relatively constant, and corresponds roughly to the water temperature measured in groundwater wells 30 to 50 feet

deep. This is referred to as the “mean earth temperature.”

http://en.wikipedia.org/wiki/Volumetric_heat_capacity … diunduh 5/2/2012

Page 72: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

SUHU TANAH – FLUKTUASI MUSIMAN

The amplitude of seasonal changes in soil temperature on either side of the mean earth temperature depends on the type of soil and

depth below the ground surface.

In Virginia the amplitude of soil temperature change at the ground surface is typically in the range of 20-25ºF, depending on the extent and

type of vegetation cover.

At depths greater than about 30 feet below the surface, however, the soil temperature remains

relatively constant throughout the year, as shown in Figure 3, below.

http://en.wikipedia.org/wiki/Volumetric_heat_capacity … diunduh 5/2/2012

Page 73: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

SUHU TANAH – KEDALAMAN PROFIL.

. http://www.geo4va.vt.edu/A1/A1.htm …. Diunduh 5/2/2012

Page 74: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

SUHU TANAH - VARIASI HORISONTAL

Vertical closed-loop earth heat exchangers are installed in boreholes 200 to 300 feet deep, where

seasonal changes in soil temperature are completely damped out. Well-based open-loop systems also

extend to this depth or deeper. These ground loop configurations are thus exposed to a constant year-

round temperature. On the other hand, horizontal-loop, spiral-loop, and horizontal direct-expansion (DX) loops are installed

in trenches that usually are less than 10 feet deep. For these types of ground loops, it is important to

accurately know the expected seasonal changes in the surrounding soil temperature.  

The extra cost of installing such systems in deeper trenches may be outweighed by the gain in thermal

performance, since deeper soils have less pronounced seasonal temperature changes and are thus closer to

room temperature, which reduces the work load of the heat pump units.

. http://www.geo4va.vt.edu/A1/A1.htm …. Diunduh 5/2/2012

Page 75: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

SUHU TANAH – KEDALAMAN

Deeper soils not only experience less extreme seasonal variations in temperature, but the changes that do occur lag farther behind those of shallower soils. This shifts the soil temperature profile later in the year, such that it more

closely matches the demand for heating and cooling.

The maximum soil temperature occurs in late August (when cooling demand is high) at a depth of 5 feet below the ground surface, but occurs in late October (after the

heating season has begun) at a depth of 12 feet below the surface.

Thus a deeper ground loop installation would lower the annual operating cost for electrical energy to run the heat

pumps, and over the life of a GHP system, these accumulated savings may more than offset the higher capital cost of burying the ground loop more deeply.

In order to determine the optimal depth of burial, it is important to accurately know how the seasonal change in

soil temperature varies with depth, which is mainly determined by the soil's thermal properties.

. http://www.geo4va.vt.edu/A1/A1.htm …. Diunduh 5/2/2012

Page 76: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

. Seasonal soil temperature change as a function of depth below ground surface for an average moist soil.

. http://www.geo4va.vt.edu/A1/A1.htm …. Diunduh 5/2/2012

Page 77: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

CIRI-CIRI THERMAL TANAH

Heat capacity (also known as specific heat) indicates the ability of a substance to store heat energy; the

greater its heat capacity, the more heat it can gain (or lose) per unit rise (or fall) in temperature.

The heat capacity of dry soil is about 0.20 BTU per pound per ºF of temperature change, which is only

one-fifth the heat capacity of water. Therefore, moist or saturated soils have greater heat capacities,

typically in the range of 0.23 to 0.25 BTU/lb/ºF.  

The light dry soils experience greater seasonal temperature swings at a given depth than wet soils.

This is because their lower heat capacity causes their temperature to rise or fall more than wet soils for a given amount of heat energy gained in the spring or

lost in the fall.

. http://www.geo4va.vt.edu/A1/A1.htm …. Diunduh 5/2/2012

Page 78: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

KONDUKTIVITAS THERMAL

(KT) Thermal conductivity is another soil property that must be known in order to design a closed-loop or direct expansion GHP system. This indicates the rate at which heat will be transferred between the ground loop and the

surrounding soil for a given temperature gradient.

The thermal conductivity of the soil and rock is the critical value that determines the length of pipe required, which in

turn affects the installation cost as well as the energy requirements for pumping working fluid through the ground

loop.

KT - TANAH BERAGAM DENGAN TEKSTURNYA.

Heat transfer capability tends to increase as soil texture becomes increasingly fine, with loam mixtures having an

intermediate value between sand and clay. As also shown in this figure, the thermal conductivity of any soil greatly improves if the soil is saturated with water. This effect is much greater for sandy soils than for clay or silt, since coarse soils are more porous and therefore hold more

water when wet.

. http://www.geo4va.vt.edu/A1/A1.htm …. Diunduh 5/2/2012

Page 79: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Konduktivitas thermal berbgaai tipe tekstur tanah.

. http://www.geo4va.vt.edu/A1/A1.htm …. Diunduh 5/2/2012

Page 80: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

KONDUKTIVITAS PANAS

The soil thermal conductivity has a significant impact on the size of the earth-coupled heat exchanger. Thus in sandy soils for example the required length of the ground loop could be as low

as 200 feet per system ton if the soil is saturated with water, or as high as 300 feet per ton if the soil is dry.

Soil thermal conductivity is of even greater importance to DX systems and designers might consider the deployment of a

“soaker hose” for horizontal DX ground loops in dry areas or if the project site is higher than the sounding terrain.

The maps presented in the next section below enable rough estimates of soil properties for regional screening purposes, but any sort of detailed feasbility assessment or design study should engage a contractor for in-situ soil thermal conductivity testing.

The range in ground loop lengths over the typcial range of soil thermal conductivities is 200 to 300 feet per system ton, which translates into a 30-50% difference in required land area, and a

10-20% difference in total system capital cost.

In-situ conductivity testing minimizes the uncertainty in estimating this key thermal property and avoids undersizing or

oversizing the ground loop.

. http://www.geo4va.vt.edu/A1/A1.htm …. Diunduh 5/2/2012

Page 81: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Thermal conductivity influence on number of boreholes and total length of the earth-coupled heat exchanger per 10 tons of load for a vertical closed-

loop GHP system.

. http://www.geo4va.vt.edu/A1/A1.htm …. Diunduh 5/2/2012

Page 82: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

SUHU TANAH

Amplitude: Amplitude is a parameter characterizing the annual variation of soil temperature around an average value. If the

variation in temperature within a day is averaged out over manyyears, the annual amplitude is one-half the difference between this annual averaged maximum and annual averaged minimum

temperatures within a year.

Damping depth: Damping depth is a constant characterizing the decrease in amplitude with an increase in distance from the soil surface. It is defined as (2Dh/w)1/2, where D h is the thermal

diffusivity and w is the frequency of a temperature fluctuation. For annual fluctuation w =2 p /365 d-1.

Thermal diffusivity: Thermal diffusivity is the change in temperature produced in a unit volume by the quantity of heat

flowing through the volume in unit time under a unit temperature gradient. It can be calculated from thermal conductivity and

volumetric heat capacity. Time lag: Time lag is the number of days from an arbitrary

starting date to the occurrence of the minimum temperature in a year.

. http://www.geo4va.vt.edu/A1/A1.htm …. Diunduh 5/2/2012

Page 83: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

SUHU TANAH - WAKTU DAN KEDALAMAN

Soil temperature fluctuates annually and daily affected mainly by variations in air temperature

and solar radiation.

The annual variation of daily average soil temperature at different depths can be estimated

using a sinusoidal function (Hillel, 1982; Marshall and Holmes, 1988; Wu and Nofziger,

1999).

This program estimates daily soil temperatures and displays these values as functions of time or

depth for user defined input parameters.

http://soilphysics.okstate.edu/software/SoilTemperature/document.pdf …. DIUNDUH 5/2/2012

Page 84: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

MODEL VARIASI SUHU TANAH

The annual variation of daily average soil temperature at different depths is described with the

following sinusoidal function ( Hillel, 1982):

where T(z,t) is the soil temperature at time t (d) and depth z (m), T a is the average soil temperature (oC),

A0 is the annual amplitude of the surface soil temperature (oC), d is the damping depth (m) of

annual fluctuation and t0 is the time lag (days) from an arbitrary starting date (taken as January 1 in this

software) to the occurrence of the minimum temperature in a year.

The damping depth is given by d = (2D h/w )1/2, where Dh is the thermal diffusivity and w = 2

p /365 d-1 .

http://soilphysics.okstate.edu/software/SoilTemperature/document.pdf …. DIUNDUH 5/2/2012

Page 85: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

MODEL SINUS VARIASI SUHU TANAH

Assumptions and Simplifications

The sinusoidal temperature model was derived by solving the following partial differential

equation ( Hillel, 1982 ; Marshall and Holmes, 1988):

where T(z,t) is the soil temperature at time t and depth z and Dh is the thermal diffusivity.

http://soilphysics.okstate.edu/software/SoilTemperature/document.pdf …. DIUNDUH 5/2/2012

Page 86: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

VARIASI SUHU TANAH

The following assumptions are employed in the derivation of the temperature model:

1. A sinusoidal temperature variation at the soil surface z = 0. That is

where Ta is the average soil temperature, A0 is the amplitude of the annual temperature function, t0 a time lag from an arbitrary starting date (selected as January 1 in this software) to the occurrence of the

minimum temperature in a year.

2. At infinite depth, the soil temperature is constant and is equal to the average soil

temperature.

3. The thermal diffusivity is constant throughout the soil profile and throughout the year.

http://soilphysics.okstate.edu/software/SoilTemperature/document.pdf …. DIUNDUH 5/2/2012

Page 87: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Measured mean and predicted soil temperatures at four depths based on measured soil

surface temperatures.

http://soilphysics.okstate.edu/software/SoilTemperature/document.pdf …. DIUNDUH 5/2/2012

Page 88: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Suhu tanah pada berbagai kedalaman: Diprediksi berdasarkan suhu udara.

http://soilphysics.okstate.edu/software/SoilTemperature/document.pdf …. DIUNDUH 5/2/2012

Page 89: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Konduktivitas dan difusivitas thermal tanah: Dipengaruhi kadar air, kadaungan liat, dan bobot isi

tanah.

http://soilphysics.okstate.edu/software/SoilTemperature/document.pdf …. DIUNDUH 5/2/2012

Page 90: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Volumetric heat capacity for three bulk densities for soils whose thermal conductivity and diffusivity.

http://www.usyd.edu.au/agric/web04/Temperature%20Waves_final.htm

Page 91: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

SUHU TANAH - PENANAMAN

Whether you’re planting seeds or targeting weeds, it’s important to check your soil temperature before beginning.

Even the best-planned garden project can fall flat if temperatures are not appropriate for the occasion! For example, did you know that you should:

Plant spring bulbs when the soil temperature drops below 60° F.Apply crabgrass control in spring, when soil temperatures reach 55° F for 4-5

days in a row.Plant cool-season grass seed once soil temperatures are in the 50s F.

Give your new shrubs time to grow roots before soil temperatures fall below 40° F.

Be very careful when starting vegetable seeds, since germination temperature is vital to the seeds’ success and every vegetable is different.

http://www.usyd.edu.au/agric/web04/Temperature%20Waves_final.htm. http://www.dannylipford.com/how-to-measure-soil-temperature-for-planting/

Soil temperature plays an important role in soil chemical reactions and biological interactions, particularly nutrient and fertilizer transformations, solute transport, gas

exchange and the transformation and transport of contaminants (Buchan 2001).Soil temperature varies in response to exchange processes that take place primarily

through the soil surface. These effects are propagated into the soil profile by transport processes and are influenced by such things as the specific heat capacity,

thermal conductivity and thermal diffusivity. Soil temperature can vary greatly throughout the day with increasing and decreasing solar radiation. Soil temperatures also vary greatly with depth from the surface, as well as with differences in soil cover (mulch) and soil water content. The thermal

properties of a soil have been found to be indicative of the soil water content. Water is a better thermal conductor than air. The thermal conductivity of soil increases with

increasing water contents (Fredlund, 1992).

Buchan, G.D., (2001) Soil Temperature Regime, in Smith, K.A., and Mullins, C.E. (Eds). Soil and Environmental Analysis: Physical Methods 2nd Ed. 2001. Marcel Dekker. pp, 539-594.Fredlund, D.G. (1992). Background, Theory, and Research Related to the Use of Thermal Conductivity Sensors for Matric Suction Measurement. Soil Science Society of America. Advances in Measurement of Soil Physical Properties: Bringing Theory into Practice, 249-261.

Page 92: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

TERMOMETER TANAH

You can purchase a simple soil thermometer at your local garden center for just a few dollars.

The most economical ones are glass bulb thermometers with a strong metal point. However, any thermometer will do, as long as it measures temperatures down to freezing (medical thermometers usually don’t go

low enough).

http://www.ipm.iastate.edu/ipm/icm/2001/10-22-2001/why50.html … diuduh 15/2/2012

Influence of soil temperature on nitrification.Ammonium sulfate nitrification after 24 days. Soils held at either constant

temperature (80, 60, or 40°F) for 24 days, or the temperature varied (between 80, 60, and 40°F sequences) by 8- or 12-day intervals over the 24 days.

Adapted from Chandra, P. 1962. Note on the effect of shifting temperatures on nitrification in a loam soil. Can. J. Soil Sci. 42:314-315.

Temperature Sequence % Nitrification

Continuous at 80°F for 24 days 100

12 Days at 80°F-12 days at 40°F 96

8 Days at 80°F-8 days at 60°F-8 days at 40°F

74

12 Days at 40°F-12 days at 80°F 62

Continuous at 60°F for 24 days 59

8 Days at 60°F-8 days at 80°F-8 days at 40°F

56

8 Days at 40°F-8 days at 60°F-8 days at 80°F

45

Continuous at 40°F for 24 days 29

Page 93: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

BAGAIMANA MENGUKUR SUHU TANAH?.

Measure the Right Depth: If you are planting seeds or new plants, take your measurement at the recommended planting depth. If you’re measuring for a mixed garden,

check at least 5-6 inches deep.

Make a Pilot Hole: Use a screwdriver to make a pilot hole so that you don’t break your thermometer by pushing it into

hard soil.Follow Directions: Refer to your thermometer package for specific instructions. With most glass bulb thermometers,

make sure it is firmly touching the soil, and allow a few minutes for the temperature to register.

Provide Shade: If the sun is bright, shade the thermometer with your hand to keep the reading accurate.

Multiple Measurements: Take a reading in the morning and late afternoon, then average the two numbers. If you’re

seeding a lawn, take readings on all four sides of your house, since some areas warm more quickly than others.

Check Reading: To double-check, refer to these handy Soil Temperature Maps from Greencast for a comparison

with your soil reading.

Page 94: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

SUHU TANAH – PERKECAMBAHAN BENIH

The soil temperature for planting vegetables should be:40° F or warmer: Lettuce, kale, peas, spinach.

50° F or warmer: Onions, leeks, turnips, Swiss chard.60° F or warmer: Broccoli, cabbage, cauliflower, carrots, beans, beets.

70° F or warmer: Tomatoes, squash, corn, cucumbers, melons, peppers.

The seed germination temperature is often much warmer than the plant’s growing temperature. Once established, many veggies can handle much cooler air

temperatures as long as the soil is warm enough. To get a head start on spring planting, plant seeds indoors or use plastic row covers

to warm the soil more quickly.

Temperature has a large influence on rate of seed water uptake, speed of germination, and rate of plant emergence. As temperature increases, both the rate of water uptake and speed of germination increase and

time to emergence decreases for winter wheatThe effect of soil temperature on speed of germination and emergence of Norstar winter wheat (from

Lafond and Fowler, 1989).

http://www.usask.ca/agriculture/plantsci/winter_cereals/Winter_wheat/CHAPT11/cvchpt11.php

Page 95: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

. Soil temperature and vegetable seed germination

.http://www.waldeneffect.org/blog/Soil_temperature_and_vegetable_seed_germination/

Diunduh 5/2/2012

Vegetable Minimum temp. (degrees F)

Optimum temp. (degrees F)

Beans 60 60-85

Cabbage 40 45-95

Carrots 40 45-85

Corn 50 60-95

Cucumbers 60 60-95

Lettuce 35 40-80

Muskmelons 60 75-95

Okra 60 70-95

Onions 35 50-95

Parsley 40 50-85

Peas 40 40-75

Peppers 60 65-95

Pumpkins 60 70-90

Spinach 35 45-75

Squash 60 70-95

Swiss chard 40 50-85

Tomatoes 50 70-95

Turnips 40 60-105

Watermelons 60 70-95

Page 96: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

SUHU TANAH - TANAMAN

The temperature of a soil is important as it affects how fast plants can grow. Soil temperature also affects how quickly plants take up water and nutrients. Clay soils are cold, wet soils.

Germination and seedling growth is usually slow.Because sandy soils don't contain much water but lots of air, they warm up quickly. They are

useful for growing early crops.Soil temperature affects the speed of chemical reactions. Warm temperatures speed up

reactions and colder ones slow them down. Soil temperature affects the breakdown of parent material and how fast micro-organisms work. Both are important in adding and returning

nutrients to the soil. Soil temperature is influenced by the climate of the area and the season of the year.

http://www.correspondence.school.nz/departments/horticulture/ht106_p7.html. .... Diunduh 5/2/2012

Effect of soil temperature and water potential on emergence time of Norstar winter wheat (from Lafond and Fowler, 1989).

http://www.usask.ca/agriculture/plantsci/winter_cereals/Winter_wheat/CHAPT11/cvchpt11.php

Page 97: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

SUHU TANAH - POSISI LERENG

The slope of the land and the direction that it faces directly affects the temperature of a soil. Sun will fall on north-facing land during the day in both summer

and winter.

http://www.correspondence.school.nz/departments/horticulture/ht106_p7.html

Diunduh 5/2/2012

Page 98: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

SUHU TANAH – KEDALAMAN TANAH

The deeper you go down in a soil profile the less the soil temperature will fluctuate

http://www.correspondence.school.nz/departments/horticulture/ht106_p7.html

Diunduh 5/2/2012

Soil is a good insulator. It can take a

while for the soil at the bottom of a profile to heat up, but it will

also take a longer time for it to lose the heat that is stored there.

Page 99: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

SUHU TANAH DAN AKTIVITAS BIOLOGIS TANAH

Soil temperature affects the speed of plant growth and soil processes.Soil temperature is influenced by: climate, season, aspect, water levels, soil colour,

plant cover and soil depth.The temperature in a soil will determine the speed of chemical and biological

activity. Clay soils take a long time to warm up but are also slower to cool down. The

temperature in a sandy soil can change rapidly. Wet soils also take longer to warm up.

http://www.correspondence.school.nz/departments/horticulture/ht106_p7.htmlDiunduh 5/2/2012

Amplitude of seasonal soil temperature change as a function of depth below ground surface.

http://www.builditsolar.com/Projects/Cooling/EarthTemperatures.htm diunduh 15/2/2012

Page 100: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

SUHU-TANAH OPTIMUM BAGI TANAMAN

Corn requires a soil temperature of 50° F to germinate and grow and soybeans require a soil

temperature of 54° F. Temperatures below the optimum will cause seeds to sit dormant

and become more vulnerable to diseases, insects, and animal predators.

Crops should be planted when soil temperatures are optimal and within the target dates for the region.

Keep in mind these dates are based on the average year and the use of short or long relative maturity corn products will affect these

target dates. Planting into cold and/or wet soils can lead to numerous problems.

http://munsonhybrids.com/tidbits/Plant%20Corn%20and%20Soybean%20By%20Soil%20Temperature%20and%20Conditions%20Not%20According%20To%20The

%20Calendar%20-%20IA.pdf ….. Diunduh 5/2/2012

Aqua ammonia incubated in soil at controlled temperature.http://www.ipm.iastate.edu/ipm/icm/2001/10-22-2001/why50.html

Page 101: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

SUHU TANAH DAN PERTUMBUHAN BIBIT

Soil temperature is more important than air temperature when planting seeds or seedlings.  You can have in the spring a warm spell of temps in the 70’s while the soil

temp is still in the 40’s. Every vegetable has a preferred soil temp for seeds or transplants. A soil thermometer is

essential for determining the proper planting time. Planting too early, before the soil has had time to warm

up, can lead to seed rot, slowed germination, poor growth and disease. 

Use the following guide for minimum soil temperatures for seeds and transplants: 

60o F - tomatoes, cucumbers, snap beans65o F - sweet corn, lima beans, mustard greens70o F - peppers, watermelons, squash, southern peas75o F - okra, cantaloupe, sweet potatoes

http://yardener.com/YardenersPlantHelper/FoodGardening/BasicsofVegetableGardening/

SoilBuildingandManagementintheVegetableGarden/SoilTemperatureIsImportantDiunduh 5/2/2012

Page 102: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Soil Temperature Germination Ranges for Select Vegetables

TEMP (° F)

PLANT

35–75 spinach (optimum 68)

35–80lettuce and most salad greens (at more than 80,

germination rate drops 50%)

40–75 peas (optimum 75)

45–85cabbage, kale, broccoli, collards (germinate well at 85,

seedlings prefer 45–65)

45–95 radishes (optimum 85)

50–85 onions (optimum 75)

50–85 beets, Swiss chard (optimum 85)

60–85 beans, snap and dry (optimum 80)

60–95 corn (optimum 95)

60–95 peppers (optimum 85)

65–100 cucumbers, melons, squash (optimum 80–95)

65–82 tomatoes (optimum 80)

70–85 beans, lima (optimum 85)

From: Market News, March 1995.

http://yardener.com/YardenersPlantHelper/FoodGardening/BasicsofVegetableGardening/SoilBuildingandManagementintheVegetableGarden/SoilTemperatureIsImportant

Diuinduh 5/2/2012

Page 103: TEMPERATUR  TANAH: Perilaku dan Efeknya bagi Tanaman

Daftar Pustaka

deVries, D. A., 1963. Thermal Properties of Soils. In W.R. van Wijk (ed.) Physics of Plant Environment. North-Holland Publishing Company, Amsterdam.

de Vries, D. A. 1975. Heat Transfer in Soils. In D.A. de Vries and N.H. Afgan (ed.) Heat and Mass Transfer in the Biosphere. Pp.5-28. Scripta Book Co., Washington, DC.

Farouki, O.T. 1986. Thermal Properties of Soils. Series on rock and soil mechanics. Vol. 11. Trans Tech Publ., Clausthal-Zellerfeld, Germany.

Hillel, D. 1982. Introduction to soil physics. Academic Press, San Diego, CA.

Marshall, T. J. and J. W. Holmes 1988. Soil Physics. 2nd ed. Cambridge Univ. Press, New York.

Wu, J. and D. L. Nofziger 1999. Incorporating temperature effects on pesticide degradation into a management model. J. Environ. Qual. 28:92-100.