UNIVERSITI PUTRA MALAYSIA POSITION .Kajian berkenaan motor servo arus terns (DC) kebiasaannya...

download UNIVERSITI PUTRA MALAYSIA POSITION .Kajian berkenaan motor servo arus terns (DC) kebiasaannya tertumpu

of 25

  • date post

    01-Sep-2018
  • Category

    Documents

  • view

    212
  • download

    0

Embed Size (px)

Transcript of UNIVERSITI PUTRA MALAYSIA POSITION .Kajian berkenaan motor servo arus terns (DC) kebiasaannya...

  • UNIVERSITI PUTRA MALAYSIA

    POSITION CONTROL STRATEGIES OF DC SERVO MOTOR

    ERNY AZNIDA ALWI

    FK 2003 45

  • POSITION CONTROL STRATEGIES OF DC SERVO MOTOR

    By

    ERNY AZNIDA ALWI

    Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

    June 2003

  • DEDICATION

    To MY BeLoVeD FaMiLY, HuBBY aND auNY

    ii

  • Abstract of thesis presented to the Senate ofUniversiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

    POSITION CONTROL STRATEGIES OF DC SERVO MOTOR

    By

    ERNY AZNIDA ALWI

    June 2003

    Chairman: Samsul Bahari Mohd Noor, Ph.D.

    Faculty: Engineering

    Direct Current (DC) servo motor is mainly studied for its speed and position control.

    This study however, concentrated only on the position control part. The technology of

    position control of DC servo motor has evolved considerably over the past few years.

    To date, various types of DC servo motor position control scheme have been developed.

    To name some, there are microcontrollerbased control, PC based control, adaptive

    control and optimal control.

    In this study, a simulation and a real time implementation of DC servo motor position

    control are presented. The types of controller designed and tested are the proportional

    integral derivative (PID) controller and the adaptive controller. PID control scheme is

    chosen mainly because of its simplicity advantage while the adaptive scheme is chosen

    due to its ability to adapt.

    iii

  • With some modification and adaptation, these two designed schemes have been

    interfaced via MA TLAB Real Time Toolbox to a servo trainer as the plant for real time

    implementation. This toolbox contains a library of blocks with real time input and

    output support. Following the design part, the modeling and simulation part are done.

    The mathematical design or model of the controller then has been simulated in

    MATLAB before being interfaced to the real plant. The PID and adaptive controller

    have been successfully implemented to the plant with satisfactory results. Analysis has

    been done to compare the performance of the two controllers from the simulation and

    real time results.

    iv

  • PERPUSTAKAAt>J SULTAN ABDUL SAMAD UNIVERSfTl PUmA MAlAYSIA

    Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

    STRA TEGI KA WALAN KEDUDUKAN MOTOR SERVO ARUS TERUS

    Oleh

    ERNY AZNIDA ALWI

    Jun 2003

    Pengerusi: Samsul Bahari Mohd Noor, Ph.D.

    Fakulti: Kejuruteraan

    Kajian berkenaan motor servo arus terns (DC) kebiasaannya tertumpu kepada kawalan

    kelajuan dan kedudukannya. Walaubagaimanapun, dalam kajian ini, hanya kawalan

    kedudukan sahaja akan diberi tumpuan. Teknologi kawalan kedudukan motor arus terus

    telah berkembang pesat sejak beberapa tahun kebelakangan ini. Sehingga ke hari ini,

    pelbagai jenis sistem kawalan kedudukan motor arus terns telah dibangunkan. Di

    antaranya, kawalan berasaskan pengawal mikro, kawalan berasaskan komputer,

    kawalan adaptasi dan kawalan optimal.

    Dalam kajian ini, simulasi dan implementasi masa nyata dibentangkan. Jenis pengawal

    yang direkabentuk dan diuji adalah pengawal terbitan kamiran perkadaran (PID) dan

    pengawal adaptasi. Skima pengawal PID dipilih disebabkan kelebihannya yang mudah

    manakala pengawal adaptasi dipilih kerana kebolehannya untuk menyesuaikan diri.

    v

  • Dengan sedikit pengubahsuaian dan penyesualan, kedua-dua sistem yang telah

    direkabentuk disambungkan ke servo trainer yang merupakan loji untuk implementasi

    masa nyata melalui antaramuka MA TLAB Real Time Toolbox. Perisian ini mengandungi

    himpunan blok-blok dengan masukan dan keluaran masa sebenar. Selepas rekabentuk,

    permodelan dan simulasi dilakukan. Rekabentuk matematik atau model pengawal

    kemudiannya disimulasikan di dalam MATLAB sebelum diantaramukakan dengan loji

    sebenar. Pengawal PID dan adaptasi telah berjaya diimplementasikan ke loji dengan

    keputusan yang memuaskan. Analisa ke atas keputusan simulasi dan masa nyata

    dijalankan untuk membandingkan prestasi kedua-dua pengawal.

    vi

  • ACKNOWLEDGEMENTS

    I would like to express my appreciation especially to my project supervisor, Dr. Samsul

    Bahari Mohd Noor and all the supervisory committee for the given guidance and time

    spent. Many thanks also go to my loving family, my parents, husband and my beautiful

    daughter for their unconditional support and love which without it this work would not

    have been possible. Finally special thanks to my friends and all who have contributed in

    making my research a success.

    vii

  • I certify that an Examination Committee met on 4th June 2003 to conduct the final examination of Emy Aznida Alwi on her Master of Science thesis entitled "Position Control Strategies of DC Servo Motor" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1 980 and Universiti Pertanian Malaysia (Higher Degree) Regulation 1 98 1. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

    Syed Javaid Iqbal, Ph.D. Lecturer Faculty of Engineering

    Universiti Putra Malaysia (Chairman)

    Samsul Bahari Mohd Noor, Ph.D. Lecturer Faculty of Engineering

    Universiti Putra Malaysia (Member)

    Sen an Mahmood, Ph.D Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

    Jasronita Jasni Lecturer Faculty of Engineering

    Universiti Putra Malaysia (Member)

    GULAM HMAT ALI, Ph.D. ProfessorlDeputy Dean School of Graduate Studies

    Universiti Putra Malaysia

    Date: 0 4 DEC 2fXB

    viii

  • This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree of Master of Science. The members of the Supervisory Committee are as follows:

    Samsul Bahari Mohd Noor, Ph.D. Lecturer Faculty of Engineering Universiti Putra Malaysia (Chairman)

    Senan Mahmood, Ph.D Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

    Jasronita Jasni Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

    ix

    AINI IDERIS, Ph.D. ProfessorlDean School of Graduate Studies Universiti Putra Malaysia

  • DECLARATION

    I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

    x

    ERNY AZNIDA AL WI

    Date: %t2-S &')

  • TABLE OF CONTENTS

    DEDICATION ABSTRACT ABSTRAK ACKNOWLEDGEMENTS APPROVAL DECLARATION LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS

    CHAPTER

    1

    2

    INTRODUCTION 1 . 1 Importance of Servo Position Control 1 .2 Objectives 1 .3 Thesis Organization

    LITERATURE REVIEW 2.1 Introduction 2.2 Position Controller Development for Different Types

    of Motor 2.2. 1 The Optimal Position Controller 2 .2.2 The Robust Position Controller

    2.3 The PID Controller 2.3 . 1 Tuning the PID Controller

    2.4 Adaptive Control Scheme 2.4.1 Gain Scheduling 2.4.2 Model Reference Adaptive Systems 2.4.3 Self-Tuning Regulators 2.4.4 Dual Control

    2.5 Recursive Least Square Estimator 2.6 System Representation 2.7 System Stability 2.8 Servo Motor

    2.8. 1 Definition of Servo System 2.8.2 Types of Motor 2.8.3 Motor Amplifier Dead-zone

    2.9 Summary

    xi

    Page

    ii 1ll V Vll viii x xiii XIV XVll

    1 1 2 3

    4 4

    5 6 7 8 10 12 13 14 15 16 16 1 7 1 9 1 9 20 21 21 22

  • 3 METHODOLOGY 23 3 . 1 Introduction 23 3 .2 Description of Servo System 24 3 .3 Method of System Representation 25 3.4 Determination of Servo System Model 26

    3.4.1 Actuator and Sensor Characteristics 27 3.4.2 Motor and Sensor Characteristics 29 3.4.3 Measurement of kj km and ke 29

    3 .5 Constructing the SIMULINK Model 35 3.5 . 1 Designing Model o f Servo System with

    Controllers 35 3.5 .2 Designing Model of Controller with Real

    Time Feature 41 3 .6 Hardware Configuration 42 3 .7 Summary 44

    4 RESULTS AND DISCUSSION 45 4. 1 Introduction 45 4.2 Experimental Results 46 4.3 Mathematical Solution of System Model 49 4.4 SIMULINK Model Designs 52

    4.4. 1 Model of Servo System with Controller 52 4.4.2 Model of Controllers for Real Time

    Implementation 53 4.5 SIMULINK Simulation Results 54 4.6 Real Time Implementation Results 64 4.7 Discussion 72

    5 CONCLUSION AND FUTURE WORKS 74 5.1 Conclusion 74 5 .2 Future Works 76

    REFERENCES 77 APPENDICES

    A Experimental Data 8 1 B SIMULINK S-Function Files 84 C Matlab M-Files for SIMULINK Model 87 D Data Sheets 127

    BIODATA OF THE AUTHOR 1 30

    xii

  • Table 4. 1 : Data of Experiment 1

    Table 4.2 : Data of Experiment 2

    Table 4.3 : Data of Experiment 3

    LIST OF TABLES

    xiii

    Page

    81

    82

    83

  • LIST OF FIGURES

    Page

    Figure 2. 1 : A servo system 20

    Figure 3 . 1 : The servo trainer 24

    Figure 3 .2 : Servo control system: clutch engaged 26

    Figure 3 .3 : Block diagram representation of servo control system 27

    Figure 3 .4 : Block diagram of overall transfer functi