2014 2 MELAKA SMK Gajah Berang_MATHS QA

6
2014-2-MELAKA-SMK GajahBerang_MATHS QA Section A [45 marks] Answer all questions in this section. 1. Find the limits of the following, if it exists : (a) lim β†’3 2 βˆ’2βˆ’3 |βˆ’3| [4 marks] (b) lim β†’1 (+2)(√ βˆ’1) βˆ’1 [3 marks] 2. (a) Find the gradient of the normal to the curve y = ln 2 at the point where x = e. [3 marks] (b) Evaluate ∫ sin 3 6 0 , giving your answer in the exact form. [5 marks] 3. y y = √ P y = 1 0 x The diagram above shows the curves y = √ and y = 1 intersecting at the point P. Find the coordinates of P. [2 marks] Calculate the area of the region bounded by the two curves, the y-axis and the line y = 2. [4 marks] Determine the volume of the solid generated when the region bounded by the curve y = √ , the x-axis and the line x = 1 is revolved 360 0 about the x-axis. [3 marks] 4. Given that x<4, find ∫ 8 (4βˆ’)(8βˆ’) . [4 marks] A chemical reaction takes place in a solution containing a substance S. At the beginning, there are 2 grams of S in the solution and t hours later, there are x grams of S. The rate of the reaction is such that x satisfies the differential equation 8 = (4 βˆ’ )(8 βˆ’ ). Solve this equation, giving t in terms of x. Then find to the nearest minute, the time taken at which there are 3 grams of S present. [3 marks]

Transcript of 2014 2 MELAKA SMK Gajah Berang_MATHS QA

Page 1: 2014 2 MELAKA SMK Gajah Berang_MATHS QA

2014-2-MELAKA-SMK GajahBerang_MATHS QA

Section A [45 marks] Answer all questions in this section.

1. Find the limits of the following, if it exists :

(a) limπ‘₯β†’3

π‘₯2βˆ’2π‘₯βˆ’3

|π‘₯βˆ’3| [4 marks]

(b) limπ‘₯β†’1

(π‘₯+2)(√π‘₯βˆ’1)

π‘₯βˆ’1 [3 marks]

2. (a) Find the gradient of the normal to the curve y = ln π‘₯

π‘₯2 at the point where x = e.

[3 marks]

(b) Evaluate ∫ 𝑒π‘₯ sin 3π‘₯ 𝑑π‘₯πœ‹

60

, giving your answer in the exact form. [5 marks]

3. y y = √π‘₯

P

y = 1

π‘₯

0 x

The diagram above shows the curves y = √π‘₯ and y = 1

π‘₯ intersecting at the point P.

Find the coordinates of P. [2 marks] Calculate the area of the region bounded by the two curves, the y-axis and the line y = 2. [4 marks] Determine the volume of the solid generated when the region bounded by the curve

y = √π‘₯, the x-axis and the line x = 1 is revolved 3600 about the x-axis. [3 marks]

4. Given that x<4, find ∫8

(4βˆ’π‘₯)(8βˆ’π‘₯)𝑑π‘₯. [4 marks]

A chemical reaction takes place in a solution containing a substance S. At the beginning,

there are 2 grams of S in the solution and t hours later, there are x grams of S.

The rate of the reaction is such that x satisfies the differential equation

8𝑑π‘₯

𝑑𝑑= (4 βˆ’ π‘₯)(8 βˆ’ π‘₯).

Solve this equation, giving t in terms of x. Then find to the nearest minute, the time taken

at which there are 3 grams of S present. [3 marks]

Page 2: 2014 2 MELAKA SMK Gajah Berang_MATHS QA

5. It is given that , at any point on the graph of y = f(x), 𝑑𝑦

𝑑π‘₯= √(1 + 𝑦3) ,

(i) Show that 𝑑2𝑦

𝑑π‘₯2 = 3

2 𝑦2 [2 marks]

(ii) Find expressions for 𝑑3𝑦

𝑑π‘₯3 and 𝑑4𝑦

𝑑π‘₯4 in terms of y and 𝑑𝑦

𝑑π‘₯ . [3 marks]

(iii) The graph of y = f(x) passes through the origin. Show that the first two terms in the

Maclaurin’s series for y is x + 1

8π‘₯4 [2 marks]

(iv) Hence, evaluate limπ‘₯β†’0

𝑦

sin 2π‘₯.

(You may use the Maclaurin series for sin 2x without proof) [3 marks]

6. Given y=ln (1+x2) and ∫ 𝑦𝑑π‘₯ = 1.4373,2

0 𝑦𝑛 = 1.6094 π‘Žπ‘›π‘‘ βˆ‘ 𝑦𝑖

π‘›βˆ’11 = 4.9446.

Find the value of n. [4 marks]

Section B [ 15 marks] Answer any one question in this section.

7. Given the curve y = 3π‘₯βˆ’9

π‘₯2βˆ’π‘₯βˆ’2 , find the intervals of x where the curve is a decreasing function.

Find also the stationary points and determine their nature. [6 marks]

Write the equations of the asymptotes and hence sketch the graph of y = 3π‘₯βˆ’9

π‘₯2βˆ’π‘₯βˆ’2

Sketch on a separate diagram the graph of y = π‘₯2βˆ’π‘₯βˆ’2

3π‘₯βˆ’9 [9 marks]

8. Show that the equation 𝑒π‘₯ = 3 βˆ’ 2π‘₯ has only one real root. [3 marks]

Show that the real root is between 0 and 1. [2 marks]

Given that x0 =0.6 as an initial approximation, use the Newton-Raphson method to find

the root correct to four decimal places. [5 marks]

Hence state the value of x, to four decimal places, which satisfies the equation

a) x=3βˆ’π‘’π‘₯

2 [1 marks]

b) x=ln(3-2x) [1 marks]

Sketch the graphs of y=x and y=ln(3-2x) on the same axes, state clearly the coordinates of Intersection point. [3 marks]

Page 3: 2014 2 MELAKA SMK Gajah Berang_MATHS QA

SMKGB 2014 T2 TRIAL MARKSCHEME

1. Find the limits of the following, if it exists :

(a) limπ‘₯β†’3

π‘₯2βˆ’2π‘₯βˆ’3

|π‘₯βˆ’3|

limπ‘₯β†’3βˆ’

π‘₯2βˆ’2π‘₯βˆ’3

|π‘₯βˆ’3|= lim

π‘₯β†’3βˆ’

(π‘₯βˆ’3)(π‘₯+1)

βˆ’(π‘₯βˆ’3)= βˆ’4

limπ‘₯β†’3+

π‘₯2βˆ’2π‘₯βˆ’3

|π‘₯βˆ’3|= lim

π‘₯β†’3+

(π‘₯βˆ’3)(π‘₯+1)

(π‘₯βˆ’3)= 4 either one √ M1A1 lim

π‘₯β†’3βˆ’

π‘₯2βˆ’2π‘₯βˆ’3

βˆ’(π‘₯βˆ’3)β‰ 

limπ‘₯β†’3+

(π‘₯βˆ’3)(π‘₯+1)

(π‘₯βˆ’3) ∴ lim

π‘₯β†’3𝑓(π‘₯) does not exit M1A1

(b) limπ‘₯β†’1

(π‘₯+2)(√π‘₯βˆ’1)

π‘₯βˆ’1= lim

π‘₯β†’1

(π‘₯+2)(√π‘₯βˆ’1)

(√π‘₯ βˆ’1)(√π‘₯+1) = lim

π‘₯β†’1

(π‘₯+2)

(√π‘₯+1) M1 lim

π‘₯β†’1βˆ’

(π‘₯+2)

(√π‘₯+1) =

limπ‘₯β†’1+

(π‘₯+2)

(√π‘₯+1) =

3

2 M1A1

2. (a) 𝑑𝑦

𝑑π‘₯=

π‘₯2(1

π‘₯)βˆ’(ln π‘₯)(2π‘₯)

π‘₯4 quotient rule M1

𝑑𝑦

𝑑π‘₯=

1βˆ’2

𝑒3 = βˆ’1

𝑒3 substitute x = e M1Gradient of

normal = e3 A1

(b) ∫ 𝑒π‘₯ sin 3π‘₯ 𝑑π‘₯ = [𝑒π‘₯ (βˆ’ cos 3π‘₯)

3] βˆ’ ∫ 𝑒π‘₯ (βˆ’ cos 3π‘₯)

3𝑑π‘₯ by parts M1

∫ 𝑒π‘₯ sin 3π‘₯ 𝑑π‘₯ = [𝑒π‘₯ (βˆ’ cos 3π‘₯)

3] +

1

3[𝑒π‘₯ (sin 3π‘₯)

3βˆ’ ∫ 𝑒π‘₯ (sin 3π‘₯)

3𝑑π‘₯] + c M1

10

9∫ 𝑒π‘₯ sin 3π‘₯ 𝑑π‘₯ = [𝑒π‘₯ (βˆ’ cos 3π‘₯)

3] +

1

9𝑒π‘₯ sin 3π‘₯+ c A1

∫ 𝑒π‘₯ sin 3π‘₯ 𝑑π‘₯ =9

10[𝑒π‘₯ sin 3π‘₯

9βˆ’ 𝑒π‘₯ cos 3π‘₯

3]

πœ‹6⁄

0

πœ‹6⁄

0 M1

= 1

10(𝑒

πœ‹6⁄ βˆ’ 0 βˆ’ 0 + 3𝑒0)

= 1

10(𝑒

πœ‹6⁄ + 3) A1

3. √π‘₯ = 1/π‘₯ simultaneous M1

x = 1, y = 1 P(1, 1) A1

Area = ∫ (βˆšπ‘¦ )2𝑑𝑦 + ∫1

𝑦 𝑑𝑦

2

1

1

0 limits & add M1 M1

= [ 2

3𝑦

32⁄ ]

10

+ [ ln y] 21

A1

= 1/3 + ln 2 A1

Volume = πœ‹ ∫ π‘₯1

0 𝑑π‘₯ M1

= πœ‹ [ 1

2π‘₯2]

10

A1

= Β½ Ο€ A1

4. ∫8

(4βˆ’π‘₯)(8βˆ’π‘₯)𝑑π‘₯. 𝑙𝑒𝑑

8

(4βˆ’π‘₯)(8βˆ’π‘₯) ≑

𝐴

4βˆ’π‘₯+

𝐡

8βˆ’π‘₯ M1

𝐴 = 2 , 𝐡 = βˆ’2 A1

∫8

(4βˆ’π‘₯)(8βˆ’π‘₯)𝑑π‘₯ = -2 ln (4-x) + 2ln (8-x) + c M1A1

t= -2 ln (4-x) + 2ln (8-x) + c

when x=2, t=0, c= -2ln3 M1A1

t= -2 ln (4-x) + 2ln (8-x) -2 ln 3

Page 4: 2014 2 MELAKA SMK Gajah Berang_MATHS QA

when x=3, t=2 ln 5

3 = 1.022 =61minutes A1

5. (i) 𝑑2𝑦

𝑑π‘₯2 = 1

2(1 + 𝑦3)βˆ’

1

2 (3𝑦2)𝑑𝑦

𝑑π‘₯ M1

= 3

2𝑦2 substsitute dy/dx A1

(ii) 𝑑3𝑦

𝑑π‘₯3 = 3𝑦𝑑𝑦

𝑑π‘₯ A1

𝑑4𝑦

𝑑π‘₯4 = 3(𝑑𝑦

𝑑π‘₯)2 + 3y

𝑑2𝑦

𝑑π‘₯2 product rule M1

= 3(𝑑𝑦

𝑑π‘₯)2 + 3y(

3

2𝑦2 )

= 3(𝑑𝑦

𝑑π‘₯)2 +

9

2𝑦3 or 3 +

15

2𝑦3 A1

(iii) x =0 , y = 0

𝑑𝑦

𝑑π‘₯ = 1,

𝑑2𝑦

𝑑π‘₯2 = 0 ,

𝑑3𝑦

𝑑π‘₯3= 0 , 𝑑4𝑦

𝑑π‘₯4 = 3

y = 0 + x + 0x2 + 0 x3 + 3 (π‘₯4

4! ) + … M1

= x + 1

8π‘₯4 + … A1

(iv) limπ‘₯β†’0

𝑦

sin 2π‘₯ = lim

π‘₯β†’0

π‘₯+ 1

8π‘₯4

2π‘₯βˆ’ (2π‘₯)3

6 +

(2π‘₯)

120

5+β‹―

A1 for sin 2x

= limπ‘₯β†’0

1+ 1

8π‘₯3

2βˆ’ 4π‘₯2

3+

4π‘₯4

15+β‹―

M1

= Β½ A1

6. x=0, y = ln (1+0) = 0 B1

Area = 1

2 .

2

𝑛 ((π‘¦π‘œ + 𝑦𝑛) + 2( 𝑦1 + 𝑦2 + 𝑦3 + β‹― + 𝑦𝑛 ) B1for

2

𝑛 ,

1

2

1

2 .

2

𝑛 ((0 + 1.6094) + 2(4.9446 ) = 1.4373 M1

n = 8 A1

7. 𝑑𝑦

𝑑π‘₯=

3(π‘₯2βˆ’π‘₯βˆ’2)βˆ’(3π‘₯βˆ’9)(2π‘₯βˆ’1)

(π‘₯2βˆ’π‘₯βˆ’2)2 M1

= βˆ’3(π‘₯βˆ’1)(π‘₯βˆ’5)

(π‘₯2βˆ’π‘₯βˆ’2)2

For decreasing function, βˆ’3(π‘₯βˆ’1)(π‘₯βˆ’5)

(π‘₯2βˆ’π‘₯βˆ’2)2 < 0 M1

{ x : x < 1 or x > 5 } M1 A1

(1, 3) is min point A1

Page 5: 2014 2 MELAKA SMK Gajah Berang_MATHS QA

(5, 1

3) is a maximum point A1

Asymptotes are x = – 1, x = 2 and A1

y = 0 A1

x = – 1 y x = 2

centre shape D1

4.5 sides D1

(1, 3) (5, 1/3) asymptotes & points D1

All correct D1

0 2 3 x

Y x = 3

Asymptotes D1

(5, 3) shapes D1

All D1

(1, 1/3)

2/9

– 1 0 2 x

Y Y= 𝑒π‘₯

3 1 intersection point, ∴ 1 real root B1

8.

D1D1

Y = 3 – 2x

0

1 2

1

x

Page 6: 2014 2 MELAKA SMK Gajah Berang_MATHS QA

f(0) =1-3+0 = -2

f(1) = e-3+2 = 1.718 f(x) changes sign, ∴ there is a root between 0 and 1. M1A1

substitute X0 = 0.6,

Using NR method xn+1 = x0 - 𝑓(π‘₯)

𝑓′(π‘₯) , f(x)= 𝑒π‘₯ βˆ’ 3 + 2π‘₯, f’(x) = 𝑒π‘₯ + 2, M1

X1 = 0.6 – 0,022119

3.82212 = 0.59421 M1A1

X2 = 0.59421 – 0,00002

3.81160 = 0.5942 M1

∴ the approximate root is 0.5942 ( 4dp) A1

(a) 0.5942 B1

b) 0.5942 B1

Y x = 3

2

ln3

D1D1

0 1 x

the intersection point is (0.5942, 0.5942) B1