95010007-Rian-M.-Azhar

download 95010007-Rian-M.-Azhar

of 24

Transcript of 95010007-Rian-M.-Azhar

  • 7/30/2019 95010007-Rian-M.-Azhar

    1/24

    Program Magister Manajemen Pengelolaan Sumber Daya Air

    1

    STUDI PENGAMANAN PANTAI TIPE PEMECAH GELOMBANG

    TENGGELAM DI PANTAI TANJUNG KAIT

    Rian M Azhar1) , Andojo Wurjanto2), Nita Yuanita3)1 Program Studi Magister Pengelolaan Sumber Daya Air - Institut Teknologi Bandung Jl. Ganesha No.10

    Bandung 40132, e-mail :[email protected] Kelompok Keahlian Kelautan Fakultas Teknik Sipil dan Lingkungan Institut Teknologi Bandung Jl. Ganesha

    No.10 Bandung 40132, e-mail :[email protected] Kelompok Keahlian Kelautan Fakultas Teknik Sipil dan Lingkungan Institut Teknologi Bandung Jl. Ganesha

    No.10 Bandung 40132, e-mail :[email protected] Pengelolaan Sumber Daya Air

    Email :[email protected];Hp : 08156028813

    ABSTRAK

    Penanganan erosi di pantai Tanjung Kait dengan menggunakan tipe pemecah gelombang tenggelammenimbulkan proses sedimentasi di depan struktur. Sedimentasi yang terjadi dapat menimbulkan majunya garis

    pantai, sehingga besarnya sedimentasi yang terjadi dapat mengurangi proses kerusakan pantai. Studi ini

    mengambil kajian tentang sedimentasi yang terjadi di depan struktur tipe pemecah gelombang tenggelam. Proses

    sedimentasi dieperkirakan karena adanya angkutan sedimen sejajar pantai. Dengan menggunakan perangkat

    lunak Mike 21 dengan modul Hydrodynamic/HD, Spectral Wave/SW, Sand Transport/ST. MIKE 21 modul

    Hydrodynamic/HD, Spectral Wave/SW, Sand Transport/ST digunakan untuk memdelkan proses sedimentasi

    yang terjadi setelah pemasangan struktur pengamanan pantai berupa pemecah gelombang tenggelam akibat

    pengaruh arus dan gelombang yang terjadi di pantai Tanjung Kait. Kalibrasi hidrodinamika dilakukan dengan

    membandingkan output dari model (arus dan elevasi muka air) dengan hasil pengamatan.

    Skenario pemodelan melakukan running model selama pada saat pemasangan bulan Mei 2011, dibandingkan

    dengan hasil monitoring yang dilakukan pada saat bulan Desember 2011. Sehingga hasil pemodelan menganalisa

    pola sedimentasi yang terjadi akibat proses hidrodinamik dan gelombang di sekitar struktur pengamanan pantai

    pemecah gelombang tenggelam.Kata Kunci: Mike 21, model hidrodinamika,gelombang, transportasi sedimen, gelombang, pemecah gelombang

    tenggelam, Tanjung Kait

    ABSTRACTErosion Handling on shore Tanjung Kait by using subemerge breakwater type generates sedimentation process in front ofstructure. Sedimentation that happened can generate changing coastline, until level of sedimentation that happened canlessen process of coast damage. This Study takes about sedimentation that happened in front of submerge breakwater type.Sedimentation process are predicted caused by longshore current transportation. By using software Mike 21 with moduleHydrodynamic/HD, Spectral Wave/SW, Sand Transport/ST. MIKE 21 modules Hydrodynamic/HD, Spectral Wave/SW, SandTransport/ST are used for modelling sedimentation process that happened after installation of beach protection structure

    have the shape of submerge breakwater type consequence of current influence and wave that happened on shore TanjungKait. Calibrate hydrodynamics is conducted by compare to output from model (current and water elevation) with perceptionresult.Modeling Scenario conducted running model during when installation on Mei 2011, compared to monitoring result thatconducted when on December 2011. Until result of pattern analysis modeling sedimentation that happened because ofhydrodynamic process and wave around structure of billows beach protection submerge breakwater type.

    Keyword: Mike 21, hydrodynamics model ,wave, sediment transportation, submerge breakwater, Tanjung Kait

    mailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]
  • 7/30/2019 95010007-Rian-M.-Azhar

    2/24

    Program Magister Manajemen Pengelolaan Sumber Daya Air

    2

    1. PENDAHULUANPantai adalah daerah pertemuan antara daratan dan lautan yang tersusun dari bermacam material yang antara lain

    pasir-kerikil, lempung-lanau, bahkan batuan serta material-material lainnya. Perubahan garis pantai umumnya

    disebabkan tidak saja oleh faktor alam tetapi juga akibat kegiatan manusia. Faktor alam diantaranya adalah

    gelombang, arus, aksi angin, sedimentasi, sungai, kondisi tumbuhan pantai serta aktifitas tektonik dan vulkanik.

    Sedangkan perubahan karena faktor manusia antara lain adalah kegiatan pembangunan pelabuhan,

    pertambangan, pengerukan, perusakan vegetasi pantai, pertambakan, perlindungan pantai, reklamasi pantai, dan

    kegiatan wisata pantai.

    Wilayah Pesisir pantai Kabupaten Tangerang merupakan kawasan pesisir Utara Jawa bagian utara berhadapan

    langsung dengan Laut Jawa. Sebagaimana daerah pantai di kawasan Pantai Utara Jawa lainnya, pesisir pantai di

    Kabupaten Tangerang ini umumnya didominasi oleh pantai berlumpur dan sebagian pantai berpasir. Pantai

    berpasir ini memberi peluang bagi pengembangan wisata pantai/wisata bahari seperti Pantai Tanjung Kait di

    Desa Tanjung Anom Kecamatan Mauk yang karena keindahan hamparan pasirnya, telah menjadi tempat tujuan

    wisata di Kabupaten Tangerang (lihat gambar 1 dan 2).

    Eksploitasi dan pemanfaatan daerah pantai secara besar-besaran terhadap sumberdaya pesisir dan laut dalam

    rangka pembangunan ekonomi yang dilakukan beberapa tahun yang lalu telah menyebabkan terjadinya

    kerusakan lingkungan yang parah. Dampak negatif dari eksploitasi secara berlebihan dan tidak terarah tersebut

    telah dapat dirasakan langsung oleh masyarakat desa pesisir dengan tergerusnya garis pantai (erosi/abrasi) danbertambah dangkalnya perairan pantai (sedimentasi/pengendapan). Di beberapa lokasi pantai, masalah erosi danabrasi ini telah mengancam dan merusak tempat wisata, daerah permukiman, tempat ibadah, areal pertambakan,

    dan prasarana umum lainnya. Untuk menghindari kerusakan yang terus berlanjut pihak pemerintah dalam hal ini

    BBWS Cidanau-Ciujung-Cidurian membuat pengamanan pantai berupa pemecah gelombang ambang

    rendah/tenggelam. Pemecah gelombang tenggelam dibuat pada bulan Mei 2011 dengan menggunakan tipe

    geotube berbahan geotekstil, struktur ini dipasang sejajar garis pantai sebanyak 3 buah dengan panjang 20 m,

    pada kedalaman berkisar 1,3 m (berdasarkan MSL=0) dan dibuat bercelah dengan jarak antar struktur 5 m.

    Pemasangan struktur ini pada lokasi yang terjadi permasalahan erosi yakni di pantai Tanjung Kait. Struktur ini

    bertujuan selain untuk melindungi pantai dari hantaman energi gelombang juga berfungsi sebagai struktur yang

    dapat menangkap sedimen agar dapat menambah maju garis pantai yang sebelum penanganan merupakan daerah

    yang tererosi.

    Gambar 1 Peta Lokasi Pantai Tanjung Kait (sumber :google earth)

    Gambar 2 Lokasi Kajian yang berada bersebelahan dengan pelabuhan Tanjung Kait (sumber :google earth)

  • 7/30/2019 95010007-Rian-M.-Azhar

    3/24

    Program Magister Manajemen Pengelolaan Sumber Daya Air

    3

    2. TINJAUAN PUSTAKA2.1 Dimensi dan Derajat Submergensi PEGAR

    2.1.1 Pemecah Gelombang TenggelamAdaptasi teknologi khususnya terhadap struktur pemecah gelombang lepas pantai telah menghasilkan struktur

    pemecah gelombang lepas pantai tenggelam yang sekarang dikenal dengan LCB atau Low-Crested

    Breakwaters.Beberapa literatur menyimak merebaknya penggunaan LCB di berbagai negara seperti USA, UK,

    Jepang, dan Itali (Durgappa, 2008), bahkan di Jepang penggunaan LCB menjadi sangat popular dan lebihbanyak digunakan dari pada breakwaters konvensional (Pilarczyk, 2003). Keunggulan LCB antara lain mampu

    mengurangi dampak estetika, lebih murah, sirkulasi air yang lebih baik yang memungkinkan meningkatnya

    kualitas air dan produktivitas biologi, dan mengurangi efek hambatan terhadap angkutan sediment (Kularatne et

    al, 2008).

    Pengurangan energi gelombang yang mengenai pantai dapat dilakukan dengan pembuatan bangunan pemecah

    gelombang sejajar pantai (offshore breakwaters). Pemecah gelombang ini menirukan prinsip perlindungan alami

    oleh terumbu karang. Gelombang besar yang menghempas pantai ditahan dan dihancurkan sebelum garis pantai,

    sehingga ketika mencapai garis pantai energi gelombang berkurang. Dengan berkurangnya energi gelombang di

    daerah bayangan pemecah gelombang, maka transportasi sedimen di daerah tersebut akan berkurang dan akan

    terjadi pengendapan seperti pada gambar 3.

    Pemecah gelombang tenggelam dapat diklasifikasikan ke dalam 3 (tiga) kategori yaitu : dynamically stable reefbreakwater, statically stable low-crested breakwaterdan statically stable submerged breakwater(van der Meer,

    1991). Pemakaian pemecah gelombang tenggelam, termasuk submerged breakwater belakangan ini sudahbanyak dipakai (Pina, 1990). Submerged breakwater adalah pemecah gelombang tenggelam dengan elevasi awal

    ambang terletak di bawah elevasi muka air diam (SWL). Pemecah gelombang ini mungkin tidak efektif pada saat

    pasang. Untuk mendapatkan hasil yang efektif, pemecah gelombang ini sebaiknya dipasang pada lokasi dengan

    pasang surut rendah. Fungsi utama dari pemecah gelombang tenggelam adalah meredam energi gelombang yang

    datang ke pantai melalui mekanisme gelombang pecah, disipasi, gesekan, dan refleksi gelombang.

    Gambar 3 Pemecah gelombang dan garis pantai yang terbentuk (Sumber : Durgappa (2008))

    Perancangan pemecah gelombang tenggelam berarti menentukan tinggi gelombang transmisi dan refleksi yang

    diharapkan masih melewati puncak pemecah gelombang (lihat gambar 4). Gelombang transmisi dapat

    disebabkan oleh gelombang overtopping dan run-up yang melewati struktur. Keadaan ini dapat dipengaruhi olehberbagai faktor antara lain lebar puncak struktur, kedalaman air di kaki struktur, kemiringan sisi bangunan,

    porositas dan diameter nominal dari unit lapis lindung. Apabila struktur pemecah gelombang permeabel,

    transmisi gelombang juga disebabkan oleh penetrasi gelombang melalui pori-pori struktur. Proses perubahan

    garis pantai secara teori dapat dilihat pada gambar 5.

    Gambar 4 Pemecah Gelombang Tenggelam (Submerged Breakwater)

    Breakwater

    gelombang

    erosi

    tombolo

    Garis pantai asal

    salientsalient

    gap

    gap

  • 7/30/2019 95010007-Rian-M.-Azhar

    4/24

    Program Magister Manajemen Pengelolaan Sumber Daya Air

    4

    Gambar 5 Kondisi pola arus yang terjadi disekitar lokasi pemecah gelombang tenggelam (Sumber : Caseres,dkk 2005)

    Refleksi gelombang adalah proses transfer energi dari satu arah ke arah lain ketika gelombang datang

    diintersepsi oleh suatu penghalang. Sebagian atau seluruh energi gelombang datang kemungkinan akan

    direfleksikan kembali ke arah laut oleh penghalang tersebut. Besarnya gelombang yang direfleksikan sangat

    tergantung dari kedalaman air di kaki struktur (Ahrens 1987, Van der Meer 1991), sedangkan kemiringan sisi

    struktur tidak begitu besar pengaruhnya (Datattri et al., 1978).

    Dari beberapa hasil penelitian terdahulu dapat disimpulkan elevasi muka air dan tinggi gelombang rencana

    merupakan faktor penentu dalam perencanaan pemecah gelombang. Kinerja suatu pemecah gelombang pada

    umumnya dihubungkan dengan stabilitas struktur terhadap gaya-gaya gelombang.

    Perencanaan suatu pemecah gelombang adalah menentukan berat unit lapis lindung yang tahan terhadap

    gelombang rencana. Stabilitas pemecah gelombang dipengaruhi oleh dua faktor yaitu kondisi lingkungan pantai

    dan karakter fisik struktur. Faktor lingkungan pantai antara lain tinggi gelombang (Hs), periode gelombang (Ts),

    durasi (jumlah) gelombang, arah gelombang datang, dan kelompok gelombang. Faktor fisik struktur antara laindiameter nominal unit lapis lindung, bentuk dan kekasaran lapis lindung, kemiringan lereng, lebar puncak

    struktur, tinggi struktur dan permeabilitas inti. Faktor lain yang juga mempengaruhi tingkat stabilitas struktur

    tumpukan batu adalah metode penempatan lapis lindung.

    2.1.2 Transmisi dan Transformasi Gelombang

    Respon garis pantai terhadap keberadaan pemecah gelombang dikendalikan oleh sedikitnya 14 variabel (Hanson

    and Kraus, 1991) delapan diantaranya adalah variabel yang sangat berperan yaitu (1) jarak dari pantai; (2)

    panjang struktur; (3) karakteristik transmisi dari struktur; (4) kemiringan dasar pantai; (5) tinggi gelombang; (6)

    periode gelombang; (7) orientasi sudut dari struktur; dan (8) arah gelombang dominan.

    Analisis transformasi gelombang pada pemecah gelombang dilakukan dengan mempertimbangkan berbagaivariabel non-dimensional dalam bentuk grafik. Proses transmisi gelombang didefinisikan sebagai Kt, yaitu rasio

    antara tinggi gelombang transmisi (Ht) dan tinggi gelombang datang (Hi). Gelombang refleksi didefinisikan

    sebagai Kr, yaitu rasio antara tinggi gelombang refleksi (Hr) dan tinggi gelombang datang (Hi).

    Hasil penelitian menunjukkan bahwa koefisien transmisi tergantung dari tinggi relative pemecah gelombang

    (hc/Hi) dan kecuraman gelombang (wave steepness, sp). Efek tinggi gelombang datang, kemiringan sisi struktur,

    dan lebar puncak memberikan pengaruh yang signifikan terhadap besarnya transmisi gelombang.

    Hasil penelitian menunjukkan bahwa struktur dengan sisi lebih curam (sudut lebih besar), melewatkan

    gelombang lebih besar dibandingkan dengan sisi yang lebih landai, baik untuk kondisi puncak tenggelam

    maupun tidak. Secara fisik perbedaan ini dapat dijelaskan dengan efek gesekan dasar. Energi gelombang yang

    berjalan sepanjang slope akan terdisipasi melalui gesekan permukaan. Sisi yang landai mempunyai panjang yang

    lebih besar dibandingkan dengan sisi tegak, sehingga energi gelombang akan terdisipasi lebih besar yang

    menyebabkan trasnmisi gelombang menjadi lebih kecil.

    Refleksi gelombang juga sangat dipengaruhi oleh tinggi relatif pemecah gelombang (hc/Hi) dan periode

    gelombang. Parameter surf merupakan ratio antara kemiringan sisi struktur (slope) dengan tinggi dan periodegelombang. Trend data memperlihatkan bahwa refleksi gelombang meningkat secara signifikan dengan

    bertambah besarnya nilai .

  • 7/30/2019 95010007-Rian-M.-Azhar

    5/24

    Program Magister Manajemen Pengelolaan Sumber Daya Air

    5

    Tingkat kerusakan pemecah gelombang yang dikenai oleh berbagai jenis gelombang sangat tergantung dari

    tinggi gelombang datang. Kombinasi antara tekanan, drag, gaya angkat berpotensi untuk mengangkat unit lapis

    lindung dari tempatnya semula dan memindahkan ke tempat lain. Parameter lain yang mempengaruhi stabilitas

    struktur antara lain kedalaman air dan bentuk geometri bangunan.

    2.2 Mike 21

    Mike 21 adalah suatu perangkat lunak rekayasa profesional yang berisi sistem pemodelan yang komprehensif

    untuk program komputer untuk2D free-surface flows. Mike 21 dapat diaplikasikan untuk simulasi hidrolika danfenomena terkait di sungai, danau, estuari, teluk, pantai dan laut.Program ini dikembangkan oleh DHI Water

    &Environment. Mike 21 terdiri dari beberapa modul, diantaranya adalah sebagai berikut :

    2.2.1 Hydrodinamic (HD) Modul

    Mike 21 hydrodynamic (HD) module adalah model matematik untuk menghitung perilaku hidrodinamika air

    terhadap berbagai macam fungsi gaya, misalnya kondisi angin tertentu dan muka air yang sudah ditentukan di

    open model boundaries.Hydrodynamic module mensimulasi perbedaan muka air dan arus dalam menghadapi

    berbagai fungsi gaya di danau, estuari dan pantai. Efek dan fasilitasi yang termasuk di dalamnya yaitu:

    bottom shear stress wind shear stress barometric pressure gradients Coriolis force momentum dispersion sources and sinks evaporation flooding and drying wave radiation stresses

    Modul yang akan digunakan pada tesis ini dan persamaan pengaturnya dijelaskan berikut ini :

    Model hidrodinamik dalam Mike 21 HD adalah sistem model numerik umum untuk muka air dan aliran diestuari, teluk dan pantai.Model ini mensimulasi aliran dua dimensi tidak langgeng dalam fluida satu lapisan

    (secara vertikal homogen). Persamaan berikut, konservasi massa dan momentum, menggambarkan aliran dan

    perbedaan muka air:

    + + = (1) +

    2 +

    +

    +

    2 + 22 2

    1

    +

    q fVVx + = 0 (2) +

    2 +

    +

    +

    2 + 22 2

    1

    +

    p fVVy + = 0 (3)Dimana:,, = kedalaman air (= d, m)

    ,

    ,

    = kedalaman air dalam berbagai waktu (m)

    , , = elevasi permukaan (m), ,, =flux density dalam arah x dan y (m3/s/m) = (uh,vh); (u,v) = depth averaged velocity dalamarah x dan y, = tahanan Chezy (m/s) = kecepatan gravitasi (m/s2)() = faktor gesekan angin, , , , = kecepatan angin dalam arah x dan y (m/s)

    , = parameter Coriolis (s-1),, = tekanan atmosfer (kg/m/s2) = berat jenis air (kg/m3), = koordinat ruang (m) = waktu (s)

    ,

    ,

    = komponen effective shear stress

  • 7/30/2019 95010007-Rian-M.-Azhar

    6/24

    Program Magister Manajemen Pengelolaan Sumber Daya Air

    6

    2.2.2 Spectral Wave (SW) Modul

    MIKE 21 SW mensimulasi pembangkitan, kehilangan energi dan transmisi wind-generated waves danswelldi

    pantai dan lepas pantai. MIKE 21 SW menggunakan dua persamaan yang berbeda:

    Formulasi directional decoupled parametric Formulasi fully spectral

    Formulasi directional decoupled parametric didasarkan pada parameterisasi persamaan pergerakan kekekalan

    gelombang. Parameterisasi dibuat dalam domain frekuensi dengan memperkenalkan momen ke-0 dan ke-1 darispektrum pergerakan gelombang sebagai variabelyang bergantung mengikuti Holthuijsen (1989). Pendekatan

    yang sama digunakan dalam MIKE 21 NSWNearshore Spectral Wind-Wave Module.

    Formulasifully spectraldidasarkan pada persamaan pergerakan kekekalan gelombang, seperti yang dijelaskan di

    Komen et al. (1994) dan Young (1999), dimana spektrum directional-frequency wave action adalah variabel

    yang bergantung. MIKE 21 SW memasukkan fenomena fisik berikut:

    Pembangkitan gelombang akibat angin Interaksi non-linear wave-wave Disipasi disebabkan oleh white-capping Disipasi disebabkan oleh bottom friction Disipasi disebabkan oleh depth-induced wave breaking Refraksi danshoalingdisebabkan oleh perbedaan kedalaman Interaksi arus-gelombang Efek dari waktu-kedalaman yang berbeda-beda danflooding and drying

    Diskritisasi persamaan pengatur dalam domain geographical and spectraldilakukan menggunakan metoda cell-

    centered finite volume. Dalam domain geographical, digunakan teknik unstructured mesh. Integrasi waktudilakukan mengggunakan pendekatan fractional step dimana metoda multi-sequence explicitditerapkan untuk

    propagasi aksi gelombang. MIKE 21 SW digunakan untuk perhitungan gelombang di lepas pantai dan pantai

    dalam mode hindcastdanforecast.

    Aplikasi utamanya adalah desain struktur lepas pantai, pantai dan pelabuhan dimana perhitungan beban

    gelombang yang akurat sangat penting untuk mendapatkan desain struktur yang aman dan ekonomis.Data hasil

    pengukuran dalam perioda yang cukup lama sering tidak tersedia untuk estimasi keadaan laut ekstrim yangcukup akurat. Dalam kasus ini data hasil pengukuran dapat ditambahkan dengan data hindcastmelalui simulasi

    kondisi gelombang selama historical storms menggunakan MIKE 21 SW.

    MIKE 21 SW dapat digunakan untuk prediksi gelombang dan analisa dalam skala regional dan skala

    lokal.MIKE 21 SW juga digunakan dalam hubungannya dengan perhitungan transportasi sedimen, yang mana

    sebagian besar ditentukan oleh kondisi gelombang dan wave-induced currents. Wave-induced current

    disebabkan oleh gradien radiation stresses yang terjadi di surf zone. MIKE 21 SW dapat digunakan untukmenghitung kondisi gelombang dan radiation stresses. Dalam modul ini, persamaan pengaturnya adalah

    persamaan keseimbangan gaya gelombang baik dalam koordinat kartesian maupun sphericalyang dirumuskan

    oleh Komen et al. (1994) dan Young (1999).

    Koordinat kartesian + = (4)Dimana:

    ,

    ,

    ,

    = rapat gaya

    = waktu, = koordinat Cartesian , , , = kecepatan propagasi grup gelombang empat dimensi =sourceKoordinatspherical

    = 2 cos = 2 cos (5)Dimana:,,, = rapat gaya, = koordinatspherical, dimana = latitude dan = longitude = rapat energi normal

    = jari-jari bumi

    Dalam koordinat polar persamaan keseimbangan gaya gelombang dapat ditulis sebagai berikut: +

    + + + = (6)

  • 7/30/2019 95010007-Rian-M.-Azhar

    7/24

    Program Magister Manajemen Pengelolaan Sumber Daya Air

    7

    Dimana:,,, = 2 = total source dansink function (7)

    Energisource, S, menunjukkan superposisisource function dari berbagai macam fenomena fisik. = + + + + (8)Dimana:

    = pembentukan energi oleh angin

    = transfer energi gelombang akibat non linear wave-wave interaction = disipasi energi gelombang akibat whitecapping = disipasi akibat bottom friction = disipasi energi gelombang akibat depth-induced breakingUntuk mengetahui koefisien transmisi gelombang yang terjadi pada saat kondisi gelombang transmisi setelah

    melewati struktur menggunakan persamaan sebagai berikut :

    . () = 100% (9)Dimana :

    HT = Tinggi gelombang transmisi (setelah melewati struktur)

    Hi = Tinggi Gelombang datang (sebelum struktur)

    2.2.3 Sand Transport (ST) Modul

    Modul Sand Transport (ST) merupakan aplikasi model dari angkutan sedimen non kehesif. MIKE 21 Flow

    Model FM adalah satu sistem modeling berbasis pada satu pendekatan mesh fleksibel.Dikembangkan untuk

    aplikasi di dalam oceanographic, rekayasa pantai dan alam lingkungan muara sungai.

    Sand Transport Module menghitung hasil dari pergerakan material non kohesif berdasarkan kondisi aliran di

    dalam modul hidrodinamik serta kondisi gelombang dari perhitungan gelombang (modul spectral wave).

    Pendekatan formula yang digunakan dalam sediment transport di modul ini adalah Engelund-Hansen model,Van-Rijn model, Engelund-Fredse model, serta Meyer-Peter-Mller model. Formula yang digunakan tersebut

    memadukan antara pengaruh arus dan gelombang dalam pergerakan sedimen.

    Persamaan pengatur yang digunakan dalam modul ini adalah sebagai berikut :

    = 1+1+1

    1

    0 0

    +30

    202+202 +2001+1 (10)

    Dimana : K = Konstanta Von Karman

    t = waktu

    z = parameter tebal boundary layer

    U0 = kecepatan orbit dasar gelombang terdekat

    Uf0 = kecepatan geser arus dalam lapisan batas gelombang

    = sudut antara arus dan gelombangk = kekasaran dasar permukaan 2.5 d50 untuk lapisanplane bed

    dan 2.5 d50 + kRuntukripple covered bed

    d50 = rata ukuran diammeter

    kR = ripple yang berkaitan dengan kekasaran

    Beberapa item output yang dihasilkan dari Modul Sand Transport (ST) ini adalah :

    Total load, x-component Total load, y-component Rate of bed level change Bed level change Bed level

    2.3 Akurasi Simulasi Model

    Akurasi dilakukan untuk mengetahui besarnya penyimpangan yang terjadi antara data dari hasil pengukuran di

    lapangan dengan data hasil simulasi model.

    Setelah diketahui besarnya penyimpangan maka model dikalibrasi untuk menyesuaikan dengan data hasil

    pengukuran tersebut. Metode kalibrasi yang dilakukan pada studi ini adalah root mean square error (RMSE)dan persentase kesalahan

  • 7/30/2019 95010007-Rian-M.-Azhar

    8/24

    Program Magister Manajemen Pengelolaan Sumber Daya Air

    8

    2.3.1 Root Mean Square Error (RMSE)

    Definis RMSE :

    = 1 2=1 (11)Dimana: = Akar dari ratarata kuadrat kesalahan = Hasil pemodelan = Data lapanganN = Jumlah data

    2.3.2 Persentase Kesalahan

    Definis error :

    = 1 =1 100% (12)Dimana: = Hasil pemodelan = Data lapanganTP = Tunggang pasang, rentang besar hasil observasi yaitu selisih antara nilai terbesar dan terkecil

    N = Jumlah data

    Penyimpangan pada model yang baik adalah mendekati nol persen (lihat gambar 6).

    Gambar 6 Ilustrasi dari formulasi akurasi pemodelan

    3. METODOLOGI

    3.1 Diagram Alir Pemodelan

    Proses pemodelan dimulai dengan pengumpulan data-data yang diperlukan dalam pemodelan. Data-data tersebut

    disiapkan untuk digunakan sebagai input pemodelan. Untuk data kondisi bathimetri digunakan data dari

    DISHIDROS berupa peta laut yang sudah dilakukan digitasi terlebih dahulu dan data bathimetri hasilpengukuran. Setelah itu dilakukan pengaturan konfigurasi model yaitu penyusunan mesh dan batimetri

    pemodelan.

    Tahap selanjutnya adalah persiapan input data hydrodynamic module untuk domain besar (global) danspectral

    wave module menggunakan domain sedang (medium). Data yang disiapkan untukhydrodynamic module adalah

    syarat-syarat batas yang berupa data pasang surut dari data NAOTIDE. Sedangkan untukspectral wave moduledisiapkan data-data tinggi dan perioda gelombang signifikan hasil analisa hindcasting, juga output HD domain

    besar berupa elevasi muka air untuk dijadikan input di modul SW. Namun sebelum digunakan untuk modul SW

    dan HD domain kecil (detail), hasil HD domain besar harus dilakukan kalibrasi terlebih dahulu dengan

    menggunakan data pasang surut dan arus yang telah disiapkan untuk proses kalibrasi. Setelah melakukan proses

    kalibrasi maka proses pemodelan dapat masuk ke tahap berikutnya yakni pemodelan modul SW domain sedang

    dan HD domain kecil.

    Setelah didapatkan hasil model HD domain kecil dan SW domain sedang maka tahap selanjutnya melakukanverifikasi dengan data pengukuran pasut di lokasi kajian dan melakukan analisa sementara hasil dari SW domain

    sedang dan HD domain kecil.

    ix

    ix

  • 7/30/2019 95010007-Rian-M.-Azhar

    9/24

    Program Magister Manajemen Pengelolaan Sumber Daya Air

    9

    Kemudian tahap selanjutnya adalah melakukan proses pemodelan sedimen ST dengan menggunakan domain

    kecil. Diagram alir pemodelan dapat dilihat pada gambar 7 berikut di bawah ini :

    Gambar 7 Diagram alir pemodelan

    3.2 Kompilasi DataData yang digunakan untuk pemodelan Mike 21 seperti peta topografi, peta bathimetri, peta laut, data pasang

    surut, dan data lainnya diperoleh dari berbagai sumber. Berikut merupakan data-data yang digunakan untuk

    pemodelan Mike 21, seperti pada tabel 1 di bawah ini :

    Tabel 1 Data-data yang diperoleh dan digunakan dalam pemodelan Mike 21

    3.3 Penyusunan Meshdan Bathimetri PemodelanPenyusunan mesh adalah pekerjaan yang penting dalam proses pemodelan. Penyusunan mesh pada pemodelan

    ini berdasarkan flexible mesh dengan menggunakan mesh generator dari MIKE 21 (gambar 4.2). Mesh filemenggabungkan kedalaman perairan dengan posisi geografi yang berbeda dan berisi informasi-informasi sebagai

    berikut, yaitu:

    1. Computational grid2. Kedalaman perairan3. Boundary information

    Tahap-tahap dalam pembentukan mesh ini adalah sebagai berikut:

    -

    Mengimpor batas-batas model- Mengedit batas daratan- Spesifikasi batas-batas- Pembentukan mesh

  • 7/30/2019 95010007-Rian-M.-Azhar

    10/24

    Program Magister Manajemen Pengelolaan Sumber Daya Air

    10

    - Memperhalus batas-batas daratan- Interpolasi batimetri terhadap mesh- Memperhalus mesh

    Pada gambar 8 berikut di bawah adalah mesh domain besar (global), domain sedang (medium), dan domain kecil

    (detail).

    Gambar 8 Mesh pemodelan domain besar (kiri), domain sedang (tengah) dan domain kecil (kanan)

    3.4 Waktu SimulasiWaktu simulasi yang digunakan untuk HD domain besar dan SW menggunakan 15 (lima belas) bulan dengan

    time step intervalyang digunakan 3600 detik dengan jumlah time step sebanyak 10965. Sedangkan untuk HD

    domain kecil dan ST menggunakan 2 (dua) bulan dengan time step intervalyang digunakan 3600 detik dengan

    jumlah time step sebanyak 1465.

    3.5 Syarat BatasUntuk domain besar terdapat 5 syarat batas, sedangkan untuk domain sedang dan kecil terdapat 3 syarat batas.

    Gambar pada masing-masing kondisi syarat batas dapat dilihat pada gambar 9 berikut :

    Gambar 9 Syarat batas pemodelan domain besar (kiri), domain sedang (tengah) dan domain kecil (kanan)

    4.

    SIMULASI PEMODELAN4.1 Kalibrasi Pasang Surut4.1.1 Domain Besar

    Kalibrasi pasang surut dilakukan untuk mendapatkan model yang sesuai dengan kondisi lapangan yaitu untuk

    domain desar dengan cara membandingkan data pasang surut hasil simulasi modul HD dengan data pasang surut

    stasiun pengamatan yang terdekat. Dalam hal ini penulis mengambil 3 lokasi stasiun pengamatan yang

    digunakan sebagai proses kalibrasi untuk domain besar, lokasi tersebut adalah :

    1 Stasiun Bakauheni2 Stasiun Suralaya3 Stasiun Tanjung Priok

    Ketiga lokasi tersebut menggunakan data pasang surut pada bulan Oktober 2010, lokasi ketiga stasiun dapat

    dilihat pada gambar 10 berikut :

  • 7/30/2019 95010007-Rian-M.-Azhar

    11/24

  • 7/30/2019 95010007-Rian-M.-Azhar

    12/24

    Program Magister Manajemen Pengelolaan Sumber Daya Air

    12

    Gambar 13 Grafik kalibrasi pasang surut di stasiun Tanjung Priok

    4.1.2 Domain Kecil

    Untuk domain kecil digunakan utnuk memverifikasi data hasil pengukuran dengan hasil simulasi HD untuk

    domain detail (lihat gambar 14). Dari hasil simulasi diperoleh nilai error = 6,2% dan RMSE = 0,072. Dari proses

    tersebut dapat dilihat hasil sebagai berikut :

    Gambar 14 Grafik kalibrasi pasang surut di lokasi kajian

    4.2 Kalibrasi Arus4.2.1 Domain Besar

    Dalam proses kalibrasi domain besar dilakukan dengan membandingkan data hasil simulasi dengan data

    pengukuran yang dilakukan di pantai Pasir Putih, Anyer pada bulan Oktober 2010 (lihat gambar 15 dan 16).

    Perbandingan tersebut dengan menggunakan berbagai nilai chezy, diperoleh gambar sebagai berikut :

    Gambar 15 Grafik kalibrasi arus di lokasi pantai Pasir Putih, Anyer

    Gambar 16 Diagram kalibrasi arus di lokasi pantai Pasir Putih, Anyer

    Dari hasil simulasi diperoleh nilai prosesntase error sebesar 17,062 % dan RMSE = 0,118.

  • 7/30/2019 95010007-Rian-M.-Azhar

    13/24

    Program Magister Manajemen Pengelolaan Sumber Daya Air

    13

    4.2.2 Domain KecilUntuk domain kecil dilakukan dengan membandingkan data arus hasil simulasi dengan data arus hasil

    pengukuran di lokasi kajian. Pada gambar 17 berikut di bawah dapat dilihat hasil diagram arus di lokasi kajian.

    Gambar 17 Diagram kalibrasi arus di lokasi kajian

    4.3 Analisa Pasang Surut dan Arus4.3.1 Kondisi Domain Besar

    1. Kondisi Pasang TinggiPada saat kondisi pasang tinggi pergerakan air menuju ke perairan Selat Sunda dan sebagian kecil

    menuju ke arah tenggara, sehingga pada perairan Selat Sunda menyebabkan kondisi kecepatan arus

    yang cukup tinggi berkisar 0,3 -0,4 m/detik (lihat gambar 18).

    Gambar 18 Kondisi elevasi muka air dan arus pada saat kondisi pasang tinggi

    2. Kondisi Menuju SurutPada saat kondisi menuju surut terlihat pergerakan arus menjadi semakin cepat, dari utara jawa bagian

    barat arus menjadi terbagi dua menuju arah tenggara dan barat daya (lihat gambar 19).

    Gambar 19 Kondisi elevasi muka air dan arus pada saat kondisi menuju surut

  • 7/30/2019 95010007-Rian-M.-Azhar

    14/24

    Program Magister Manajemen Pengelolaan Sumber Daya Air

    14

    3. Kondisi Surut RendahPada saat kondisi surut rendah air bergerak dari perairan Selat Sunda dan Jawa bagian tengah menuju

    ke utara Jawa bagian barat (lihat gambar 20).

    Gambar 20 Kondisi elevasi muka air dan arus pada saat kondisi surut rendah

    4. Kondisi Menuju PasangPergerakan arus pada saat menuju pasang dari bagian utara dan Timur Jawa bergerak menuju perairan

    Selat Sunda, kecepatan disekitar peraiaran Selat Sunda lebih kecil di bandingkan pada saat 3 kondisi

    diatas (lihat gambar 21).

    Gambar 21 Kondisi elevasi muka air dan arus pada saat kondisi menuju pasang

    4.3.2 Kondisi Domain KecilDari hasil analisa HD untuk kondisi domain kecil terlihat pada saat pasang tinggi struktur tidak nampak namun

    kondisi pergerakan arus disekitar struktur pemecah gelombang tenggelam terjadi pola yang berbeda terlihat

    pergerakan arus disekitar struktur (lihat gambar 22 dan gambar 23).

    Gambar 22 Kondisi elevasi muka air (kiri) dan arus (kanan) pada saat kondisi pasang tinggi

  • 7/30/2019 95010007-Rian-M.-Azhar

    15/24

    Program Magister Manajemen Pengelolaan Sumber Daya Air

    15

    Gambar 22 Kondisi elevasi muka air (kiri) dan arus (kanan) pada saat kondisi surut rendah

    Pada saat kondisi surut rendah struktur mulai terlihat, jika melihat dari pergerakan hasil simulasi pada saat

    kondisi pasang dan kondisi surut terlihat pergerakan arus saat pasang menuju ke sebelah barat laut sedangkan

    pada saat surut menuju ke sebelah tenggara, sehingga dapat disimpulkan bahwa arus dominan yang terjadi hanya

    bergerak dari arah barat laut menuju tenggara atau sebaliknya.4.4 Analisa Gelombang4.4.1 Transmisi Gelombang

    Grafik transmisi gelombang hasil simulasi dengan kondisi sebelum dan sesudah struktur pada saat musim barat

    dan timur. Dengan menggunakan persamaan :

    . () = 100%Diperoleh hasil sebagai berikut :

    Koefisen transmisi gelombang pada titik 1 dan 2 = 78 % Koefisen transmisi gelombang pada titik 3 dan 4 = 75 % Koefisen transmisi gelombang pada titik 5 dan 6 = 77 %

    Untuk kondisi grafik pada saat musim timur dapat dilihat pada gambar 23 sampai dengan 25 berikut :

    Gambar 23 Kondisi tranformasi gelombang hasil simulasi saat musim timur pada titik 1 dan 2

    Gambar 24 Kondisi tranformasi gelombang hasil simulasi saat musim timur pada titik 3 dan 4

  • 7/30/2019 95010007-Rian-M.-Azhar

    16/24

    Program Magister Manajemen Pengelolaan Sumber Daya Air

    16

    Gambar 25 Kondisi tranformasi gelombang hasil simulasi saat musim timur pada titik 5 dan 6

    Pada saat musim barat diperoleh hasil sebagai berikut :

    Koefisen transmisi gelombang pada titik 1 dan 2 = 65 % Koefisen transmisi gelombang pada titik 3 dan 4 = 62 % Koefisen transmisi gelombang pada titik 5 dan 6 = 64 %

    Untuk kondisi grafik pada saat musim timur dapat dilihat pada gambar 26 sampai dengan 28, berikut :

    Gambar 26 Kondisi tranformasi gelombang hasil simulasi saat musim barat pada titik 1 dan 2

    Gambar 27 Kondisi tranformasi gelombang hasil simulasi saat musim barat pada titik 3 dan 4

    Gambar 28 Kondisi tranformasi gelombang hasil simulasi saat musim barat pada titik 5 dan 6

    4.5 Analisa Transportasi Sedimen

    Dari hasil simulasi pemodelan numerik untuk modul sand transport (ST) dapat dilihat pada gambar 29 dan 30,

    berikut di bawah ini :

  • 7/30/2019 95010007-Rian-M.-Azhar

    17/24

    Program Magister Manajemen Pengelolaan Sumber Daya Air

    17

    Gambar 29 Kondisi pada saat awal simulasi (kiri) dan akhir simulasi selama 2 bulan Mei-Juni 2011 (kanan)

    Sedangkan jika melihat kondisi hasil monitoring yang dilakukan pada bulan Desember 2011 (lihat gambar 30),

    terlihat terdapat perbedaan pola sedimentasi yang terjadi.

    Gambar 30 Kondisi pada saat monitoring yang dilakukan pada bulan Desember 2011

    Selanjutnya untuk mengamati perubahan sedimentasi di lokasi kajian dilakukan dengan membuat beberapa

    potongan melintang pantai. Gambar potongan melintang yang digunakan dapat dilihat pada gambar 31, berikut

    di bawah ini :

    Gambar 31 Potongan melintang pengamatan perubahan kedalaman

    1. Potongan I-ILaju perubahan sedimentasi dan arus pada potongan I-I dapat dilihat pada gambar 32 dan 33.

  • 7/30/2019 95010007-Rian-M.-Azhar

    18/24

    Program Magister Manajemen Pengelolaan Sumber Daya Air

    18

    Gambar 32 Perubahan kedalaman (bed level change) di potongan I-I

    Gambar 33 Kondisi perubahan arus (modul HD) yang ada di potongan I-I

    Laju perubahan sedimentasi pada potongan I-I terlihat kondisi pada awal pada saat simulasi jika dibandingkan

    dengan akhir simulasi terjadi perubahan kedalaman dan menunjukan pola sedimentasi terutama pada daerah ditengah-tengah antara garis pantai dan lokasi pemecah gelombang berada dan erosi pada jarak 60 m dari garis

    pantai. Sedangkan jika membandingkan kondisi laju sedimentasi hasil monitring menunjukan trend yang tidak

    sama. Hal ini mungkin disebabkan karena data pembanding hasil monitoring tidak diperoleh pada bulan Juni

    2011, sehingga hanya diambil rata-rata perubahan yang diambil dari asumsi.

    Namun jika melihat kondisi arus yang diambil pada dua kondisi yang berbeda yakni sebelum dilakukan

    pemasangan struktur dan sesudah dilakukan pemasangan struktur tidak menunjukan perubahan yang signifikan.

    2. Potongan II-IILaju perubahan sedimentasi dan arus pada potongan II-II dapat dilihat pada gambar 34 sampai dengan

    36.

    Gambar 34 Perubahan kedalaman (bed level change) di potongan II-II

  • 7/30/2019 95010007-Rian-M.-Azhar

    19/24

    Program Magister Manajemen Pengelolaan Sumber Daya Air

    19

    Gambar 35 Kondisi perubahan arus (modul HD) yang ada di potongan II-II

    Gambar 36 Kondisi perubahan arus (modul ST) yang ada di potongan II-II

    3. Potongan III-IIILaju perubahan sedimentasi dan arus pada potongan III-III dapat dilihat pada gambar 37 dan 39.

    Gambar 37 Perubahan kedalaman (bed level change) di potongan III-III

  • 7/30/2019 95010007-Rian-M.-Azhar

    20/24

    Program Magister Manajemen Pengelolaan Sumber Daya Air

    20

    Gambar 38 Kondisi perubahan arus (modul HD) yang ada di potongan III-III

    Gambar 39 Kondisi perubahan arus (modul ST) yang ada di potongan III-III

    4. Potongan IV-IVLaju perubahan sedimentasi dan arus pada potongan IV-IVdapat dilihat pada gambar 40 dan 42.

    Gambar 40 Perubahan kedalaman (bed level change) di potongan IV-IV

  • 7/30/2019 95010007-Rian-M.-Azhar

    21/24

    Program Magister Manajemen Pengelolaan Sumber Daya Air

    21

    Gambar 41 Kondisi perubahan arus (modul HD) yang ada di potongan IV-IV

    Gambar 42 Kondisi perubahan arus (modul ST) yang ada di potongan IV-IV

    5. Potongan V-VLaju perubahan sedimentasi dan arus pada potongan V-V dapat dilihat pada gambar 43 dan 44.

    Gambar 43 Perubahan kedalaman (bed level change) di potongan V-V

  • 7/30/2019 95010007-Rian-M.-Azhar

    22/24

    Program Magister Manajemen Pengelolaan Sumber Daya Air

    22

    Gambar 44 Kondisi perubahan arus (modul HD) yang ada di potongan V-V

    Jika melihat kondisi pada potongan II-II, III-III, dan IV-IV pada saat awal simulasi dengan akhir simulasi terlihat

    terjadi pengendapan sedimentasi pada bagian tengah-tengah jarak antara garis pantai dengan struktur pemecahgelombang namun semakin mengecil, sedangkan jika kita melihat pada potongan V-V terjadi sedimentasi di

    bagian tengahnya dan erosi pada jarak 55 m dari garis pantai.

    Hal ini terjadi akibat pengaruh dari struktur pemecah gelombang yang membentuk proses salien dan pada bagian

    kiri dan kanan terjadi proses erosi. Proses sedimentasi ini terjadi akibat peredaman energi gelombang yang

    datang oleh struktur pemecah gelombang yang membawa partikel-partikel pasir, sehingga pada saat transmisi

    energi gelombang di belakang struktur semakin mengecil dan akhirnya dapat mengendapkan partikel-partikel

    pasir dan membentuk salien. Sedangkan pada bagian kiri dan kanan salien terjadi erosi akibat proses difraksi

    gelombang yang masuk menuju garis pantai dan membawa pasir mengendap di daerah endapan (salien).Sedangkan jika kita melihat kondisi arus di belakang struktur pada potongan II-II, III-III dan IV-IV terlihat

    perubahan kecepatan arus (modul HD) pada saat setelah pemasangan struktur (after) semula 0,033 0,039

    m/detik, menjadi (modul ST) 0,075 0,077 m/detik (lihat tabel 3 ). Hal ini menandakan bahwa proses

    sedimentasi yang terjadi di lokasi kajian merupakan akibat dari pengaruh gelombang (longshore current). Jika

    kita melihat proses input data yang dilakukan pada modul ST digunakan input tinggi gelombang, priode danarah, sedangkan pada modul HD hanya input pasang surut dan wave radiation stress.Jika kita melihat kondisi sebelum dan sesudah dilakukan pemasangan struktur pemecah gelombang tipe

    tenggelam terlihat bahwa terjadi penurunan kecepatan arus baik pada modul HD maupun pada modul ST hal ini

    terjadi karena adanya pengaruh struktur sehingga terjadi perubahan kecepatan (perlambatan) pada kondisi di

    belakang struktur.

    Tabel 3 Rekapitulasi perubahan kecepatan arus

    5 KESIMPULAN DAN SARAN5.1 Kesimpulan

    1) Dalam simulasi Kalibrasi HD Global diperoleh parameter bed resistance yang digunakan adalah Chezydengan nilai 30 (m^(1/2)/s). Kalibrasi yang hasilnya paling baik terdapat di stasiun Tanjung Priok.

    2) Hasil verifikasi pasang surut untuk model HD domain kecil hasil simulasi dengan data pengukurandiperoleh Error = 6,2% dan RMSE = 0,072.

    3) Hasil koefisien transmisi hasil simulasi pada kondisi sebelum struktur dan setelah struktur pada saatmusim timur 7578 %, sedangkan pada saat musim barat koefisen transmisi 6265 %.

    4) Pada bulan Mei-Juni melihat dari hasil analisa hindcasting, gelombang dominan bergerak dari arahtimur dan barat. Namun jika melihat posisi lokasi, pantai berada di sebelah barat tanjungan dan relatif

    lebih terlindungi dari gelombang yang bergerak dari arah barat.

    II-II

    III-III

    IV-IV

  • 7/30/2019 95010007-Rian-M.-Azhar

    23/24

    Program Magister Manajemen Pengelolaan Sumber Daya Air

    23

    5) Hasil simulasi kondisi garis pantai di belakang struktur pemecah gelombang terdapat perubahankedalaman garis pantai yang menjadi lebih landai/dangkal terutama pada potongan II-II, III-III dan IV-

    IV yakni ditengah-tengah antara jarak garis pantai terhadap struktur, sedangkan di sekitar potongan I-I

    dan V-V terdapat bagian yang tererosi.

    6) Pola arus pada potongan melintang II-II, III-III dan IV-IV terlihat perubahan kecepatan arus (modulHD) pada saat setelah pemasangan struktur (after) semula 0,0330,039 m/detik, menjadi (modul ST)

    0,075 0,077 m/detik. Sehingga dapat disimpulkan bahwa di lokasi tersebut proses sedimentasi yang

    terjadi di lokasi kajian merupakan akibat dari pengaruh gelombang (longshore current).

    5.2 Saran1) Perlu dilakukan kalibrasi modul SW dan modul ST, sehingga diperoleh kondisi gelombang yang

    mewakili kondisi yang ada di lokasi kajian.

    2) Perlu dilakukan running model modul ST untuk jangka waktu sesuai dengan pelaksanaan monitoringyakni pada bulan desember untuk mengetahui kondisi perubahan bathimetri yang ada di lokasi kajian.

    3) Penggunaan software Mike 21 terbaru sudah dilengkapi dengan fasilitas jenis struktur : diantaranyasubmerge breakwater, sehingga disarankan untuk melakukan kajian lebih lanjut dengan penggunaan

    software yang lebih baru.

    1) Proses running model dengan kondisi pemecah gelombang ambang rendah bercelah memerlukanperforma komputer yang cukup baik, karena dengan kondisi bercelah proses simulasi di lokasi tersebut

    menjadi lebih lama.

    Daftar Pustaka

    Ahrens, J.P., 1987, Characteristics of Reef Breakwaters. Technical Report CERC-87-17, Coastal Engineering

    Research Center, U.S. Army Corps of Engineers Waterways Experiment Station, Vicksburg,MS, 62 pp.

    Balai Pantai, 2009, Pengembangan Teknologi Pemanfaatan Energi Gelombang Laut , PUSLITBANG SDA.

    Balai Pantai, 2011 dan 2012, Monitoring Hasil Pengembangan Teknologi Pelindung Pantai, PUSLITBANG

    SDA.

    Bambang Triatmodjo, 1999, Teknik Pantai. Beta Offset, Yogyakarta.

    Caceres, I., Sanchez-Archilla, A., Alsina, J., Gonzalez-Marco, D., 2005, Coastal dynamics around a submerged

    barrier, 5 th International Conference on Coastal Dynamics, pp 158-162.

    Coastal Engineering Research Center, 2003, Coastal Engineering Manual, Department of the Army,

    Waterways Experiment Station, Corps of Engineers, Vicksburg, Mississippi.

    Dattatri, J., Raman, H. and Shankar, N.J, 1978, Performance Characteristics of Submerged Breakwater, Proc.

    of the 16th

    Coastal Engineering Conf., Hamburg, Germany, pp.2153-2171.

    DISHIDROS, 1997 Peta Laut Perairan Laut Jawa dan Selat Sunda

    DHI Software, 2007, MIKE21 Flow Model FM, Hydrodynamic Module, User Guide, DHI Water and

    Environment.

    DHI Software, 2007, MIKE21 Flow Model FM Hydrodynamic and Sand Transport Module, Spectral Wave,

    Scientific Documentation, DHI Water and Environment.

    DHI Software, 2007, MIKE21 Flow Model FM, Sand Transport Module, User Guide, DHI Water and

    Environment.

    DHI Software, 2007, MIKE21 Flow Model FM, Spectoral Wave Module, User Guide, DHI Water and

    Environment.

    Durgappa H.R., 2008, Coastal Protection Works, Proceedings of COPEDEC VII, Dubai, UAE.

    Google Earth, 2012, Peta Wilayah Pantai Tanjung Kait

    Hanson, H. and Kraus, N.C., 1990, "Shoreline Response to a Single Transmissive Detached Breakwater," Proc.22nd Coastal Engineering Conf. ASCE. The Hague.

    Jose Felix and Stone, G. W., 2006, Forecast of Nearshore Wave Parameters Using Mike 21 Spectral Wave

    Model, Gulf Coast Association of Geological Societies Transactions.

    Kularatne S.R., J.W. Kamphuis, and M.A. Dabees, 2008, Morphodynamics Around Low Crested Breakwaters

    a Numerical Study, Proceedings of COPEDEC VII, Dubai, UAE.

  • 7/30/2019 95010007-Rian-M.-Azhar

    24/24

    Program Magister Manajemen Pengelolaan Sumber Daya Air

    Pilarczyk, K.W. 2003, Design of Low Crested (Submerged) Structures- an Overview, Proceedings of

    COPEDEC VI, Colombo, Sri Lanka.

    Pina, G.G. and J.M. Valdes F. Alarcon, 1990, Experiments on Coastal Protection Submerged Breakwaters: A

    Way to Look at the Results, Proc. of the 22nd

    Coastal Engineering Conf., Delft, the Netherlands,

    pp.1592-1605.

    Prasetio, Fauzi Budi, 2010, Simulasi Numerik Transportasi Sedimen di Pantai Cirebon Akibat Pengaruh

    Gelombang dan Sedimentasi dari Sungai, Tesis Magister Kelautan, ITBPUSLITBANG SDA, 2010, Laporan Advis Teknis Perencanaan Pengamanan Pantai Tanjung Kait.

    T. Liiv, U. Liiv, 2005, Sediment Transport Balance Investigation for the Saaremaa Harbour with Mike 21

    Models, Envvironmental Research, Engineering and Management.

    Van der Meer, J.W., 1991, Stability and Transmission at Low Crested Structures, Delft Hydraulics Publication

    No. 453.

    Yuanita, Nita, 2007, Development of Cimanuk River Delta, Indonesia, Dissertation, Water Engineering and

    Management, Asian Institute of Technology.