FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

download FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

of 57

Transcript of FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    1/57

    Physics for BioTechnology

    Course Code: PHYSICSL T P C

    3 0 0 3

    Lecture3 per week

    Theory

    Total 5 Units

    Unit 1, Unit 2, Unit 3, Unit 4, Unit 5

    Unit 1: Quantum PhysicsUnit 2: Laser

    Unit 3: Fiber Optics and UltraSonicsUnit 4: Radiation PhysicsUnit 5: Thermodynamicsand NanoTechnology

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    2/57

    Unit 1: Quantum Physics

    1. Dual nature of electron magnetic radiation

    2. de Broglie wavesCompton effect experimental verification

    3. Heisenberg uncertainty principle

    4. Schrodinger equation - application

    5. Application of Quantum Mechanics - Scanning TunnelingMicroscope

    6. Atomic Force Microscope.

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    3/57

    Unit 2: Laser

    1. Laser Characteristics

    2. Absorption, Spontaneous emission, stimulated emission

    3. Pumping Mechanism

    4. Population Inversion

    5. 3 level, 4 level laser

    6. Types Ruby laser, He-Ne laser

    7. Biological application

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    4/57

    Unit 3: Fibre Optics and Ultrasonics

    1. Light propagation through fibers

    2. Acceptance angle numerical aperture

    3. Types of Fibres

    4. Step Index, grade Index

    5. Applications - Endoscope

    6. Properties of Ultrasonic

    7. Generation- Magnetostriction method, piezo electric method

    8. Detection

    9. Applications

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    5/57

    Unit 4: Radiation Physics

    1. Types of Nuclear radiations

    2. Units of radiation

    3. Labeling techniques

    4. Computerized tomography

    5. Principles of NMR: T1 and T2 relaxation, Chemical shift

    6. Principles of MRI

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    6/57

    Unit 5: Thermodynamics and nanotechnology

    1. Laws of Thermodynamics

    2. Concepts of entropy, enthalpy, free energy

    3. Nanomaterials

    4. Properties of Nanomaterials

    5. Applications of Nanotechnology in Biology and Medicine

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    7/57

    EVALUATION1. Internal evaluation: Marks 502. External Evaluation: Marks 50

    Internal evaluationContinuous Assessment TestCat 1: Marks 15, CAT 2: Marks 153 Quizzes : 3 X 5 = 15 Marks1 Assignment : 5 Marks

    Theory:

    TOTAL : 50

    Term End Exam (TEE)

    External Evaluation: Marks 50

    Total : Marks 100

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    8/57

    Max Planck (18581947) Niels Bohr (18851962)

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    9/57

    Max Born (18821970)

    Werner Heisenberg (19011976)

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    10/57

    Erwin Schrdinger (18871961)Willard Gibbs (18391903)

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    11/57

    Paul Dirac (19021984)

    All of quantum theory can be resumed intwo sentences.In nature, actions smaller than = 1.1

    1034 Js are not observed.All intrinsic properties in naturewiththe exception of masssuch as electric

    charge, spin, parities, etc., appear as

    integer numbers; in composed systems

    they either add or multiply.

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    12/57

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    13/57

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    14/57

    Newtons Physics

    Light as Particles

    Interference diffraction

    Wave nature (A , )

    Electromagnetic Radiation

    BLACK BODY RADIATION ???

    Max Planck 1900

    Quantization of EMR

    EINSTEIN (1905)

    Energy ----- Discrete bundles or Quanta

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    15/57

    All of quantum theory can be resumed in two sentences.In nature, actions smaller than = 1.1 1034 Js are not

    observed.

    All intrinsic properties in naturewith the exception ofmasssuch as electric charge, spin, parities, etc., appear

    as integer numbers;

    in composed systems they either add or multiply.

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    16/57

    If it moves, it is made of quantons, or quantumparticles.

    In nature, all intrinsic propertieswith the exceptionof masssuch as

    electric charge, spin, parities, etc., appear as integer

    numbers.

    Since all physical systems are made of quantons, in

    composed systems intrinsic properties either add or

    multiply

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    17/57

    DUAL NATURE OF ELECTRO MAGNETIC RADIATIONS

    What is the wavelength (or wavevector k = 2/)

    to be used to compute the phase

    = kx for particles?

    An EM wave of energy E carries momentum p

    p = E/c in the direction of the wave vectork = 2/

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    18/57

    A photon of frequency has energy E = h

    and carries momentump = E/c = h = h/ = h/2 . 2 / = k

    E = h = energy of a photon

    p = h/ = k momentum of a photon

    For light, the classical path no longer exists for distance scales d ~

    Or d . p ~ h.

    CRITERION THAT IDENTIFIES BORDER BETWEEN CLASSICALAND QUANTUM PHENOMENA.

    Plancks Einstein Equation

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    19/57

    A famous quantum effect: how do trainwindows manage to show twosuperimposedimages?

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    20/57

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    21/57

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    22/57

    DUAL NATURE OF ELECTRO MAGNETIC RADIATIONS

    PARTICLE WAVE

    ELECTROMAGNETIC WAVE

    QUANTISED

    C =2.988 x 1010

    cm/sVacuum

    = c

    Radiowaves

    MicrowavesIRVisibleUVXRayGamma

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    23/57

    DUAL NATURE OF ELECTRO MAGNETIC RADIATIONS

    Is light particle or waves ?

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    24/57

    PHOTO ELECTRIC EFFECT

    EPhoton= hv

    hv = hvo + KEmax

    Threshold energy hvo(Work Function)

    DUAL NATURE OF ELECTRO MAGNETIC RADIATIONS

    Einstein 1905

    Conservation of Energy requires

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    25/57

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    26/57

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    27/57

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    28/57

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    29/57

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    30/57

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    31/57

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    32/57

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    33/57

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    34/57

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    35/57

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    36/57

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    37/57

    Scanning tunneling spectroscopy(STS) is an experimental

    technique which uses a scanning tunneling microscopeScanning tunneling microscope

    A scanning tunneling microscope is a powerful instrument for

    imaging surfaces at the atomic level. Its development in 1981

    earned its inventors, Gerd Binnig and Heinrich Rohrer , the

    Nobel Prize in Physics in 1986. For an STM, good resolution

    is considered to be 0.1 nm lateral resolution and...

    (STM) to probe the local density of electronic states (LDOS)

    and band gapof surfaces and materials on surfaces at the

    atomic scale

    http://www.absoluteastronomy.com/topics/Scanning_tunneling_microscopehttp://www.absoluteastronomy.com/topics/Band_gaphttp://www.absoluteastronomy.com/topics/Band_gaphttp://www.absoluteastronomy.com/topics/Scanning_tunneling_microscope
  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    38/57

    Scanning tunneling microscopy (STM) is the highestresolution imaging and nanofabrication technique available

    It relies on quantum tunneling of electrons from asharp metal tip to a conducting surface

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    39/57

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    40/57

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    41/57

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    42/57

    STS involves observation of changes in constant-current

    topographs with tip-sample bias, local measurement of the

    tunneling current versus tip-sample bias (I-V) curve,

    measurement of the tunneling conductance

    Since the tunneling current in a scanning tunneling

    microscope only flows in a region with diameter ~5, STS is

    unusual in comparison with other surface

    spectroscopytechniques, which average over a larger

    surface region.

    http://www.absoluteastronomy.com/topics/Spectroscopyhttp://www.absoluteastronomy.com/topics/Spectroscopy
  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    43/57

    While STS can provide spectroscopic information with amazing

    spatial resolution, there are some limitations.The STM and STS lack chemical sensitivity.

    Since the tip-sample bias range in tunneling experiments is limited to

    where is the apparent barrier height, STM and STS are only sample

    valence electron states.

    Element-specific information is generally impossible to extract from

    STM and STS experiments, since the chemical bond formation

    greatly perturbs the valence states.

    LIMITATIONS

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    44/57

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    45/57

    An STM image of a monolayer, 2-dimensional liquid crystalof 1-octadecanoic acid (stearic acid) on a substrate ofhighly oriented pyrolytic graphite (HOPG). The individualmethylene groups are clearly visible, and the molecularstructure of stearic acid can be identified

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    46/57

    ATOMIC FORCE MICROSCOPY (AFM)

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    47/57

    ATOMIC FORCE MICROSCOPY (AFM)

    Atomic force microscopy (AFM) is a powerful technique

    for investigating surfaces.

    In the imaging mode, a sharp tip is scanned over a

    surface and some surface parameter monitored.

    Traditionally, the deflection of a cantilever holding the tip

    is monitored by a photodiode.When the tip scans across the surface, it will interact

    with the latter, and deflect according to the interaction:

    if there is an attractive interactionbetween the surface

    and the tip, the tip will be deflected towards the surface,

    whereas deflection away from the surface will occur in

    the case of a repulsive tip-surface interaction.

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    48/57

    AFM could be called simply a high-resolution surfaceprofiler if not one important difference

    AFM cantilever is so thin and sensitive that it can sense

    the minute surface forces, Van-der-Waals forces,

    magnetic forces, electrostatic forces, etc.

    It allows to use AFM to investigate not only surface

    topography, but probe surface physical, chemical, and

    magnetic properties.

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    49/57

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    50/57

    The main components of this tool are thin cantileverwithextremely sharp (10 A to 100 A in radius) probing tip,

    a 3D piezo-electric scanner,and optical systemto measure deflection of the cantilever.When the tip is brought into the contact with the surface orin its proximity, or is tapping the surface, it being affectedby a combination of the surface forces (attractive and

    repulsive).Those forces cause cantilever bending and torsion, whichis continuously measures via. the deflection of thereflected laser beam.3D scanner moves the sample or, in alternative designs,the cantilever, in 3 dimensions thus scanning

    predetermined area of the surface.A vertical resolution of this tool is extremely high reaching0.1 A(1 A is on the order of atomic radius).

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    51/57

    The deflection is kept constant through a feed-back loop, andthe z-movement of the stage needed for accomplishing thismonitored.

    The technique has many advantages, including capability ofextremely high resolution (atomic in favourable cases), noneed for sample treatment or coating, no need for vacuum,

    and possibility for quantitative measurements of sample form,distribution and roughness over a range of magnifications.

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    52/57

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    53/57

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    54/57

    Freshly cleaved mica was attached to a standard microscope slideby double-sided adhesive and mounted.

    The mica was imaged in contact mode using standard 450um long,single arm, etched silicon probes. Shown is a deflection imagetaken at a scan rate of 24.4Hz with integral gain set to 0.665 andproportional gain set to 0.176.

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    55/57

    Protein/DNA complex imaged in air. The protein is a restrictionendonuclease (Eco RI) bound to plasmid DNA. The ability of the

    AFM to image DNA/protein complexes rapidly and without fixationmakes it an extremely useful tool for numerous investigations.1.2um scan.

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    56/57

    Magnetic domains in low-coercivity, amorphous CoZrNb film usedin emerging, high-Ms thin-film heads. 50um scan.

    Cross-tie domains, and the effects of edge roughness.

  • 8/13/2019 FALLSEM2013 14 CP3001 02 Aug 2013 RM01 Int BioTechFall2013QuantumPhys

    57/57

    .

    Revealing the hidden atom in graphite with AFMshowing all atoms within the hexagonal graphite unitcells. Image size 22 nm2.