Operasi Ke Atas Set

13
1. PERSILANGAN o satu set yang unsurnya terdiri daripada unsur sepunya dalam A dan B. o Persilangan bagi set A dan B diwakilkan sebagai A B. o Dalam Gambar rajah Venn dibawah, a. kawasan berlorek mewakili A B. b. (A B) A c. (A B) B 2. KESATUAN o satu set yang unsurnya terdiri daripada unsur dalam A atau B atau dalam kedua-dua A dan B. o kesatuan bagi set A dan B diwakilkan sebagai A B. o Dalam Gambar rajah Venn dibawah, a. kawasan berlorek mewakili A B. b. A (A B) c. B (A B)

Transcript of Operasi Ke Atas Set

Page 1: Operasi Ke Atas Set

1. PERSILANGAN

o satu set yang unsurnya terdiri daripada unsur sepunya dalam A dan B. o Persilangan bagi set A dan B diwakilkan sebagai A   B.o Dalam Gambar rajah Venn dibawah,

a. kawasan berlorek mewakili A   B.b. (A   B)   Ac. (A   B)   B

2. KESATUAN

o satu set yang unsurnya terdiri daripada unsur dalam A atau B atau dalam kedua-dua A dan B. 

o kesatuan bagi set A dan B diwakilkan sebagai A   B. o Dalam Gambar rajah Venn dibawah, 

a. kawasan berlorek mewakili A   B.b. A   (A   B)c. B   (A   B)

Page 2: Operasi Ke Atas Set

CONTOH 1:

Diberi 

P = {1,2,3,4,5}Q = {2,6}R = {2,3,5,7}S = {7,8,9}

Senaraikan unsur bagi

a. P   Qb. P   Rc. P   Sd. P   Q   R

PENYELESAIAN 1: 

a. P   Q = {2}b. P   R = {2,3,5}c. P   S = {}d. P   Q   R = {2}

CONTOH 2:

Diberi 

ξ = {x: x ialah nombor genap dan 1 < x < 20}P = {faktor bagi 16} dan Q = {hasil darab bagi 4}

Cari nilai set bagi ( P   Q)'.

PENYELESAIAN 2:

Oleh itu, 

ξ = {2, 4, 6, 8, 10, 12, 14, 16, 18}P = {2,4,8,16} and Q = {4, 8, 12, 16}

( P   Q) = {2, 4, 8, 12, 16}( P   Q)' = {6, 10, 14, 18} 

CONTOH 3:

Page 3: Operasi Ke Atas Set

Berdasarkan gambar rajah Venn di atas, cari nilai bagi 

(a) n(P   Q   R)(b) n(P   Q   R)'(c) n(P'   Q'   R)

PENYELESAIAN 3:

(a) n(P   Q) = 2     n(P   Q   R) = 2 + 4                          = 6

(b) n(P   Q   R) = 0     Maka, n(P   Q   R)' = 6 + 2 + 7 + 4 + 3                                 = 22

(c) n(P'   Q'   R) = 4 

Page 4: Operasi Ke Atas Set
Page 5: Operasi Ke Atas Set
Page 6: Operasi Ke Atas Set
Page 7: Operasi Ke Atas Set

asic operations

There are several fundamental operations for constructing new sets from given sets.

Unions

The union of A and B, denoted A ∪ B

Main article: Union (set theory)

Two sets can be "added" together. The union of A and B, denoted by A ∪ B, is the

set of all things which are members of either A or B.

Examples:

{1, 2} ∪ {red, white} ={1, 2, red, white}.

{1, 2, green} ∪ {red, white, green} ={1, 2, red, white, green}.

{1, 2} ∪ {1, 2} = {1, 2}.

Some basic properties of unions:

A ∪ B = B ∪ A.

A ∪ (B ∪ C) = (A ∪ B) ∪ C.

A ⊆ (A ∪ B).

A ∪ A = A.

A ∪ = ∅ A.

A ⊆ B if and only if A ∪ B = B.

Page 8: Operasi Ke Atas Set

Intersections

A new set can also be constructed by determining which members two sets have "in

common". The intersection of A and B, denoted by A ∩ B, is the set of all things

which are members of both A and B. If A ∩ B = ∅, then A and B are said to be

disjoint.

The intersection of A and B, denoted A ∩ B.

Examples:

{1, 2} ∩ {red, white} = .∅

{1, 2, green} ∩ {red, white, green} = {green}.

{1, 2} ∩ {1, 2} = {1, 2}.

Some basic properties of intersections:

A ∩ B = B ∩ A.

A ∩ (B ∩ C) = (A ∩ B) ∩ C.

A ∩ B ⊆ A.

A ∩ A = A.

A ∩ = .∅ ∅

A ⊆ B if and only if A ∩ B = A.

Page 9: Operasi Ke Atas Set

Complements

The relative complement of B in A

The complement of A in U

The symmetric difference of A and B

Page 10: Operasi Ke Atas Set

Complement (set theory)

Two sets can also be "subtracted". The relative complement of B in A (also

called the set-theoretic difference of A and B), denoted by A \ B (or A − B), is the set

of all elements which are members of A but not members of B. Note that it is valid to

"subtract" members of a set that are not in the set, such as removing the element

green from the set {1, 2, 3}; doing so has no effect.

In certain settings all sets under discussion are considered to be subsets of a

given universal set U. In such cases, U \ A is called the absolute complement or

simply complement of A, and is denoted by A′.

Examples:

{1, 2} \ {red, white} = {1, 2}.

{1, 2, green} \ {red, white, green} = {1, 2}.

{1, 2} \ {1, 2} = .∅

{1, 2, 3, 4} \ {1, 3} = {2, 4}.

If U is the set of integers, E is the set of even integers, and O is the set

of odd integers, then E′ = O.

Some basic properties of complements:

A \ B ≠ B \ A.

A ∪ A′ = U.

A ∩ A′ = .∅

(A′)′ = A.

A \ A = .∅

U′ = and ′ = ∅ ∅ U.

A \ B = A ∩ B′.

An extension of the complement is the symmetric difference, defined for sets A, B as

Page 11: Operasi Ke Atas Set

For example, the symmetric difference of {7,8,9,10} and {9,10,11,12} is the set

{7,8,11,12}.

Cartesian product

Main article: Cartesian product

A new set can be constructed by associating every element of one set with every

element of another set. The Cartesian product of two sets A and B, denoted by A × B

is the set of all ordered pairs (a, b) such that a is a member of A and b is a member

of B.

Examples:

{1, 2} × {red, white} = {(1, red), (1, white), (2, red), (2, white)}.

{1, 2, green} × {red, white, green} = {(1, red), (1, white), (1, green), (2,

red), (2, white), (2, green), (green, red), (green, white), (green, green)}.

{1, 2} × {1, 2} = {(1, 1), (1, 2), (2, 1), (2, 2)}.

Some basic properties of cartesian products:

A × = .∅ ∅

A × (B ∪ C) = (A × B) ∪ (A × C).

(A ∪ B) × C = (A × C) ∪ (B × C).

Let A and B be finite sets. Then

| A × B | = | B × A | = | A | × | B |.

Page 12: Operasi Ke Atas Set