Struktur Atom dan Sistem Periodik · PDF fileukuran kation lebih kecil. Anion: Jari-jari anion...

56
Struktur Atom dan Sistem Periodik

Transcript of Struktur Atom dan Sistem Periodik · PDF fileukuran kation lebih kecil. Anion: Jari-jari anion...

Struktur Atom dan Sistem Periodik

Struktur Atom

� Elektron� Inti Atom� Gelombang� Radiasi Elektromagnet� Model Bohr untuk atom Hidrogen� Teori Gelombang Elektron� Prinsip Ketidakpastian Heisenberg� Model Quantum Atom� Konfigurasi Elektron� Sistem Periodik

Penemuan Elektron

� 1807 Davy menduga bahwa gaya listriklah yang membuat senyawa-senyawa saling berikatan

� 1833 Faraday menghubungkan massa atom dengan energi listrik yang dibutuhkan untuk menghasilkan suatu unsur selama percobaan elektrolisis

� 1891 Stoney mengajukan teori bahwa listrik dalam atom terdapat dalam bentuk yang disebut elektron

� 1897 Thomson pertama kali mengukur sifat elektron secara kuantitatif

Tabung Sinar Katoda

� Penemuan elektron oleh Thomson berdasarkan hasil percobaan menggunakan tabung sinar katoda.

� Elektron dihasilkan ketikan suatu gas terionisasi

Gas yang terionisasi

KatodaAnoda

Tonjolan kecil

Percobaan Thomson

� Thomson mengamati bahwa posisi tonjolan kecil menjadi berubah ketika medan listrik maupun medan magnet diterapkan pada tabung sinar katoda

� Thomson tak bisa menentukan massa maupun muatan elektron, hanya bisa menentukan rasio massa terhadap muatan = 6 x 10-12

kg/C

Muatan Elektron

� Percobaan Millikan menggunakan tetesan minyak yang diberikan arus listrik menunjukkan bahwa tetesan minyak memiliki muatan yang merupakan kelipatan dari 1,5924 x 10-19 C �muatan elektron

� Muatan elektron yang digunakan sekarang = -1,6021773 x 10-19 C

Massa Elektron

� Massa elektron dihitung dari hasil percobaan Thomson dan Millikan, yaitu dari rasio massa elektron terhadap muatan elektron (Thomson) dan muatan elektron (Millikan):� Me = (rasio massa terhadap muatan) x (muatan)

= (6 x 10-12 kgC-1) (1,5924 x 10-19 C)= 1 x 10-30 kg

� Massa elektron yang digunakan sekarang adalah: 9,109390 x 10-31 kg = 5,485799 x 10-4 u

Penemuan Inti Atom� Pada tahun 1909 Rutherford membombardir lempengan

logam tipis dengan partikel alfa (ion helium).� Hasil percobaan menunjukkan bahwa sekitar 1 partikel

alfa dari 8000 partikel dibelokkan oleh lempeng logam.� Pembelokan ini menunjukkan keberadaan inti atom yang

kecil, kompak dan bermuatan positif.

Penentuan Muatan Inti

� Rutherford memperkirakan muatan inti atom adalah sekitar setengahnya dari massa atom.

� Moseley yang bekerjasama dengan Rutherford menemukan hubungan langsung antara nomor atom dengan akar kuadrat dari frekuensi sinar X. Kesimpulan: muatan inti atom sama dengan elektron, hanya berbeda tanda muatan saja

Nom

or A

tom

(Frekuensi Sinar-X)1/2

Penemuan Neutron dan Proton

� Pengukuran rasio massa terhadap muatan pada inti atom dilakukan serupa dengan pengukuran terhadap elektron �ditemukan bahwa rasio ini bergantung pada gas yang digunakan dalam percobaan � Hidrogen menghasilkan partikel yang massanya paling rendah yang diasumsikan terdapat dalam setiap atom yang disebut proton.

� 1932 Chadwick mengamati bahwa ketika berilium-9 ditembaki partikel alfa, ternyata partikel yang massanya sama dengan proton tapi tanpa muatan dilepaskan, inilah yang disebut neutron.

GelombangBeberapa definisi:� Panjang gelombang, λ: jarak yang ditempuh gelombang

untuk menyempurnakan satu siklus gelombang.� Amplitudo: setengah jarak vertikal dari batas atas dan

bawah suatu gelombang.� Frekuensi,ν: jumlah siklus yang dilalui oleh gelombang

setiap titik per detik.

Amplitudo

Panjang Gelombang, λλλλ

Simpul

Radiasi Elektromagnet� Adalah suatu bentuk energi yang terdiri dari medan listrik yang

saling tegak lurus dengan medan magnet pada waktu yang sama dan satu fasa dengan waktu.

� Hubungan antara panjang gelombang dan frekuensi dalam radiasi elektromagnet adalah:

��������������������������� ��

����������� ��� ������ �

������������� � ��

ν

Radiasi Elektromagnet (EM)� Transmisi: EM akan melewati materi tanpa interaksi� Absorpsi: EM akan diserap oleh suatu atom, ion atau

molekul, sehingga akan berada pada keadaan energi yang lebih tinggi

� Emisi: pelepasan energi oleh suatu atom, ion atau molekul sebagai cahaya, sehingga kembali ke tingkat energi yang lebih rendah.

Sifat Partikel� Gelombang EM memiliki sifat

gelombang sekaligus sifat materi sebagai partikel.

� Efek fotolistrik: pertama kali diamati oleh Hertz dan kemudian dijelaskan oleh Einstein �ketika cahaya mengenai katoda yang memiliki permukaan fotoemisif, elektron dilepaskan. Elektron terkumpul di anoda dan kemudian diukur.

� Studi mengenai efek fotolistrik memperkuat sifat partikel gelombang yang disebut partikel foton.

� Energi foton berbanding lurus dengan frekuensi dan berbanding terbalik dengan panjang gelombang EM.

��������� !!���������"������

�#$���%����&�������'�'�'��� (�

Katoda

Anoda

Contoh Soal Energi Foton� Tentukan energi dalam kJ/mol foton cahaya biru-hijau

dengan panjang gelombang 486 nmJawab: Energi foton = hc/λ

Model Atom Bohr

� Bohr mempelajari spekatrum yang dihasilkan ketika atom-atom tereksitasi dalam suatu tabung gas awamuatan.

� Beliau mengamati ternyata tiap unsur menghasilkan serangkaian garis-garis spektrum tersendiri.

� Bohr menyimpulkan bahwa energi elektron terkuantisasi, hanya merupakan tingkat-tingkat energi tertentu.

� Dalam model atom Bohr, elektron hanya dapat berada pada tingkat energi tertentu (orbit). Tiap tingkat energi disebut sebagai bilangan kuantum utama, n.

� Balmer kemudian menentukan suatu hubungan empiris yang menggambarkan garis sepektrum pada atom hidrogen.

� Spektrum-spektrum untuk atom lainnya dapat digambarkan dengan hubungan yang serupa.

Model Atom Bohr

Ene

rgi

Model Atom Bohr

� Model atom Bohr digambarkan sebagai sistem planet tata surya. Setiap bilangan kuantum utama menunjukkan orbit atau lapisan, dengan inti atom berada pada pusatnya.

� Model atom Bohr dapat menjelaskan adanya garis-garis spektrum dan digunakan untuk menentukan jari-jari atom hidrogen.

� Model atom Bohr tak dapat digunakan untuk atom-atom selain hidrogen dan tak dapat menjelaskan mengapa energi terkuantisasi

Teori Gelombang Elektron� 1924 De Broglie menyarankan bahwa elektron memiliki sifat

gelombang yang menyebabkan energinya terkuantisasi. � De Broglie menyimpulkan bahwa semua partikel memiliki

panjang gelombang sesuai persamaan:

� Dengan persamaan De Broglie, panjang gelombang suatu elektron dapat dihitung (kecepatan elektron = 2,2 x 106 ms-1):

���� )�#$����%����&�������'�'�'��� (�

� ��� ������

"��� ����������� ��������*������!� +�����

Prinsip Ketidakpastian Heisenberg

� Untuk dapat mengamati elektron, maka elektron harus ditembaki dengan foton dengan panjang gelombang pendek, sehingga menghasilkan frekuensi tinggi dan energi yang tinggi.

� Apabila foton mengenai elektron, maka akan menyebabkan gerakan dan kecepatan elektron berubah.

� Menurut Heisenberg, adalah tidak mungkin untuk dapat mengetahui posisi dan kecepatan suatu objek secara bersamaan dengan tepat �dikembangkan hubungan:

Semakin kecil massa objek, ketidakpastian posisi dan kecepatannya semakin besar.

Model Kuantum Atom� SchrÖdinger mengembangkan suatu persamaan untuk menggambarkan

perilaku dan energi elektron dalam atom.� Persamaan SchrÖdinger digunakan untuk menggambarkan gelombang EM

dan tiap elektron dapat digambarkan dalam kerangka bilangan kuantumnya.� Bilangan Kuantum Utama, n: menggambarkan tingkat energi yang dimiliki

elektron (orbital). Nilai n = 1, 2, 3, dst.� Bilangan Kuantum Azimuth,l: menggambarkan bentuk orbital yang ditempati

elektron. Nilai l = n-1. Misalnya, jika n = 1, maka l = 0. Nilai l = 0, memiliki bentuk orbital s.

� Bilangan Kuantum Magnet, ml: menggambarkan orientasi atau arah proyeksi orbital dalam ruang 3 dimensi. Nilai ml = - l sampai +l (semua bilangan kecuali 0). Contoh: jika l = 2, maka ml = -2, - 1,0, 1,2.

� Bilangan Kuantum Spin, s: menggambarkan arah pergerakan elektron relatif terhadap medan magnet, searah atau berlawanan arah dengan jarum jam. Nilai s = +1/2 dan -1/2.

� Pauli membuat aturan bahwa elektron dalam suatu atom tidak bolehmemiliki bilangan kuantum yang sama (Prinsip Larangan Pauli).

Bilangan Kuantum� Dalam menyusun konfigurasi suatu elektron, maka susunan

keempat bilangan kuantum harus digunakan, mulai dari tingkat energi yang rendah ke yang lebih tinggi (Aturan Aufbau), dan pengisian elektron harus satu demi satu sebelum berpasangan untuk kestabilan (Aturan Hund).

Lambang Subkulit

Jumlah Orbital

Bentuk Orbital

Orbital s Orbital p: px, py, pz

Orbital d: dz2,dxy,dxz,dyz,dx

2-y

2

Orbital f

Konfigurasi Elektron

Untuk atom hidrogen, bilangan kuantum utama menentukan energi orbitalnya.

Semua subtingkat memiliki energi sama

Jika energi sebesar lebih dari 1312 kJ/mol ditambahkan, elektron akan benar-benar terlepas.

Ene

rgi

Konfigurasi Elektron

� Konfigurasi elektron untuk unsur yang memiliki lebih dari satu elektron lebih kompleks.� Muatan Inti Efektif. Elektron di kulit bagian dalam

bertindak sebagai pelindung elektron-elektron yang terletak pada kulit lebih luar dari interaksi muatan positif inti atom.

� Beberapa orbital mengalami penetrasi pada inti atom melebihi yang lain: s > p > d > f. Akibatnya terdapat tingkat energi berbeda untuk subtingkat energi berbeda dari masing-masing bilangan kuantum utama tertentu.

Konfigurasi Elektron

Ene

rgi

Prinsip Aufbau

� Untuk setiap atom, perlu diketahui bahwa jumlah elektron suatu atom netral sama dengan nomor atomnya.

� Pengisian orbital oleh elektron dimulai dari tingkat energi lebih rendah ke yang lebih tinggi.

� Jika terdapat dua atau lebih orbital berada pada tingkat energi yang sama akan mengalami penurunan tingkat energi.

� Jangan memasangkan elektron dulu sebelum pada subtingkat energi tertentu terisi penuh.

Contoh penerapan Prinsip Aufbau

Ene

rgi

Aturan Hund

� Ketika mengisi elektron pada orbital-orbital yang tingkat energinya sama, isilah elektron satu per satu terlebih dahulu.

� Adanya elektron-elektron yang tak berpasangan dapat diuji keberadaannya karena dapat bereaksi sebagai elektromagnet:� Paramagnetik – elektron-elektron akan tertarik pada

medan magnet yang menunjukkan keberadaan elektron tak berpasangan.

� Diamagnetik – elektron-elektron tertolak keluar oleh medan magnet yang menunjukkan semua elektron telah berpasangan.

Cara Pengisian Elektron

Sistem Periodik Unsur

Klasifikasi berdasarkan Subtingkat Energi

Sistem Periodik Unsur

� Cara pengisisan konfigurasi elektron energi dasar suatu unsur :� Mulai dengan hidrogen, susunlah unsur-unsur

dengan urutan kenaikan nomor atom.� Sepanjang satu perioda:

� Tambahkan elektron ke dalam orbital ns ketika berpindah dari golongan IA (1) ke IIA (2).

� Tambahkan elektron ke dalam orbital np ketika berpindah dari golongan III A (3) sampai 0 (18).

� Tambahkan elektron ke dalam orbital (n-1) d ketika berpindah dari golongan IIIB (3) ke II B (12) dan tambahkan elektron ke dalam orbital (n-2) f ketika menyusuri blok-f

Penulisan Konfigurasi Elektron

Contoh

Format Inti

Penulisan Konfigurasi Elektron

� Konfigurasi elektron dapat dituliskan untuk ion-ion:� Mulailah dengan menuliskan konfigurasi elektron

untuk atom pada keadaan dasar.� Untuk kation, hilangkan sejumlah elektron dari kulit

terluar sebanyak muatan kationnya. Contoh Ba2+, konfigurasi elektron Ba: [Xe] 6s2 menjadi Ba2+: [Xe] atau [Kr]3d10 4s2 4p6

� Untuk anion, tambahkan sejumlah elektron ke kulit terluar sebanyak muatan anion. Contoh: Cl−, konfigurasi elektron Cl: [Ne] 3s2 3p5 menjadi Cl−: [Ne] 3s2 3p6 atau [Ar]

Keperiodikan� Keperiodikan dalam sifat-sifat fisika dan kimia dapat

dijelaskan dengan konfigurasi elektron.� Beberapa contoh penting yang menunjukkan

keperiodikan sifar-sifat fisika dan kimia unsur adalah mencakup:� Jari-jari atom� Jari-jari ion (kation dan anion)� Energi ionisasi pertama� Afinitas elektron

Jari-jari AtomJa

ri-ja

ri (p

m)

Nomor Atom

(Gas Mulia tak termasuk)

Jari-jari Atom untuk Unsur Golongan Utama

Jari-jari Atom Unsur Golongan Utama

� Jari-jari atom semakin besar dari atas ke bawah dalam satu golongan unsur karena terdapat kulit baru yang bertambah.

� Jari-jari atom semakin kecil dari kiri ke kanan dalam satu perioda karena inti atom mengandung proton yang lebih banyak sehingga muatan positif yang besar semakin menarik elektron lebih kuat dan ukuran atom mengecil.

Jari-jari Ion (pm)

Jari-jari Ion� Kation:

� Jari-jari kation lebih kecil daripada atom netralnya.� Untuk unsur golongan utama, elektron pada kulit terluar

terlepas. Ion bermuatan positif dapat juga mengikat elektron yang tersisa lebih kuat ke inti atom sehingga ukuran kation lebih kecil.

� Anion:� Jari-jari anion lebih besar daripada atom netralnya.� Penambahan elektron akan meningkatkan gaya tolak antara

elektron sehingga ion membutuhkan waktu yang lebih lama untuk mengikat elektron pada kulit yang sama menimbulkan ‘pengembangan’ kulit terluar. Akibatnya inti atom lebih sulit menarik elektron-elektron dan jari-jari anion menjadi lebih besar.

Konfigurasi Isoelektron

� Isoelektron: spesi yang memiliki konfigurasi elektron yang sama.

� Contoh: Setiap spesi berikut memiliki konfigurasi elektron yang sama, yaitu 1s2 2s2 2p6:

O2− F− NeNa+ Mg2+ Al3+

Energi Ionisasi

� Energi Ionisasi Pertama: energi yang dibutuhkan untuk melepaskan satu elektron dari suatu atom netral dalam fasa gas.

A(g) + Energi Ionisasi Pertama →→→→ A+(g) + e−−−−

� Hal ini menunjukkan kemudahan untuk membentuk suatu kation. Semakin kecil energi ionisasi, semakin mudah membentuk kation.

� Logam cenderung memiliki energi ionisasi pertama lebih rendah daripada nonlogam sehingga cenderung untuk membentuk kation.

Energi Ionisasi PertamaE

nerg

i Ion

isas

i Per

tam

a (k

J/m

ol)

Nomor Atom

Energi Ionisasi PertamaEnergi yang dibutuhkan untuk melepaskan satu e−−−− dari suatu atom netral dalam fasa gas

Afinitas Elektron

� Afinitas elektron: suatu ukuran kecenderungan suatu atom untuk menarik elektron dalam fasa gas.

A(g) + e−−−− →→→→ A−−−−(g) + energi panas� Afinitas elektron merupakan fungsi periodik tak

beraturan dari nomor atom. Secara umum, afinitas aelektron semakin meningkat dari kiri ke kanan dalam satu perioda.

� Gas mulia tidak termasuk karena tidak memiliki kecenderungan atau kecil kecenderungannya untuk menarik elektron.

Afinitas Elektron

Nomor Atom

Afin

itas

Ele

ktro

n (k

J/m

ol)

Afinitas Elektron

Energi yang dilepaskan ketika suatu atom menangkap e−−−−

Sifat Kimia dan Tabel Periodik

� Konfigurasi elektron membantu kita memahami perubahan jari-jari atom, energi ionisasi dan afinitas elektron.

� Beberapa kecenderungan dalam kereaktifan yang dapat teramati:� Logam-logam golongan utama menjadi lebih reaktif dari atas ke

bawah dalam satu golongan.� Kereaktifan unsur-unsur nonlogam berkurang dari atas ke

bawah dalam satu golongan.� Logam-logam transisi menjadi kurang reaktif dari atas ke bawah

dalam satu golongan.

Hidrogen� Hidrogen adalah unsur non logam pada kondisi normal.� Dapat melepaskan satu elektron membentuk H+, dan

dapat juga menarik elektrok membentuk H−.

> 200 oC

2Na(l) + H2(g) →→→→ 2NaH(s)� Hidrogen biasanya ditempatkan dalam tabel periodik

pada golongan IA (1) atau diantara golongan IA(1) dan VIIA (17) atau tidak di golongan manapun.

Gas Mulia

� Setiap gas mulia memiliki elektron-elektron yang terisi pada subtingkat energi s dan p, kecuali helium (hanya s)

� Semua gas mulia sangat tak reaktif� Sejumlah terbatas senyawa gas mulia telah dapat dibuat

menggunakan unsur Xenon dan Kripton.> 250 oC

Xe(g) + F2(g) →→→→ XeF2(g)

Logam Alkali

� Golongan logam IA (1) semuanya memiliki konfigurasi elektron terluar ns1.

� Cenderung melepaskan satu elektron membentuk ion 1+ dan dijadikan dasar bagi hampir semua reaksi yang melibatkan logam alkali.

M →→→→ M+ + e−−−−

� Kereaktifan unsur-unsur logam alkali bertambah dari atas ke bawah dalam satu golongan

Logam Alkali Tanah

� Golongan logam alkali tanah, golongan IIA (2) tidak sereaktif logam alkali.

� Unsur-unsur logam alkali tanah harus melepaskan dua elektron terluarnya untuk mencapai konfigurasi gas mulia. Energi ionisasisemakin kecil dari atas ke bawah dalam satu golongan, berarti semakin mudah melepaskan elektron.

M →→→→ M2+ + 2e−−−−

� Kereaktifan bertambah dari atas ke bawah dalam satu golongan� Energi ionisasi logam alkali tanah relatif lebih tinggi dibandingkan

energi ionisai unsur gologan alkali dan golongan IIIA (3) dikarenakan efek terisi penuhnya orbital elektron terluar pada unsur alkali tanah, dibandingkan logam alkali dan golongan IIIA(3).

Halogen� Sifat umum unsur-unsur golongan VIIA (17) adalah semuanya

nonlogam.� Semua halogen hanya membutuhkan satu elektron saja untuk

memenuhi konfigurasi gas mulia� Ketika bereaksi dengan logam, unsur-unsur gas mulia membentuk

ion 1 –, membentuk ikatan ion.2Na(s) + Cl2(g) →→→→ 2NaCl(s)

� Ketika bereaksi dengan unsur nonlogam lainnya, akan saling berbagi elektron, membentuk ikatan kovalen.

O2(g) + 2F2(g) →→→→ 2OF2(g)� Unsur diatomiknya bervariasi wujudnya pada kondisi standar (1 atm,

25 oC): gas (F2 dan Cl2); cair (Br2); padat (I2).

Cara-cara Penomoran Golongan

� Terdapat beberapa metode yang digunakan untuk menomori golongan pada tabel periodik:� Metode yang digunakan para kimiawan Amerika (American

Chemical Society, ACS)� Sistem IUPAC lama� Sistem IUPAC yang berlaku saat ini.

� Para kimiawan di Amerika (American Chemical Society, ACS) juga mengadopsi sistem yang digunakan IUPAC

Sistem Penomoran untuk Tabel Periodik

IUPAC lama

IUPAC dan ACS sekarang

Sistem AS