Bahan Kuliah: Gerak Satu Dan Dua Dimensi

download Bahan Kuliah: Gerak Satu Dan Dua Dimensi

of 56

Transcript of Bahan Kuliah: Gerak Satu Dan Dua Dimensi

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    1/56

    Motion in one and two dimention

    Setyawan P. Sakti 

    FISIKA I

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    2/56

    Position & Displacement

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    3/56

    Dynamics

    • The branch of physics involving the motion of anobject and the relationship between that motionand other physics concepts

    •   K inemat ics   is a part of dynamics – In kinematics, you are interested in the description of

    motion

     – Not concerned with the cause of the motion

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    4/56

    Position

    • Position is defined in

    terms of a frame of

    reference

    Frame A:  x i >0 and x f >0Frame B:  x’ i 0

    • One dimensional, so

    generally the x- or y-axis

    A

    B

     x’  xi’    x f  ’ 

    Units

    Feet (ft)US Cust

    Centimeters (cm)CGS

    Meters (m)SI

    Units

    Feet (ft)US Cust

    Centimeters (cm)CGS

    Meters (m)SI

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    5/56

    Displacement

    • Displacement measures thechange in position

     – Represented as x (ifhorizontal) or y (if vertical)

     – Vector quantity (i.e. needs

    directional information)• + or - is generally sufficient to

    indicate direction for one-dimensional motion

    UnitsSI Meters (m)

    CGS Centimeters (cm)

    US Cust Feet (ft)

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    6/56

    Displacement

    m

    mm

     x x x i f  

    70

    1080

    1

    m

    mm

     x x x i f  

    60

    8020

    2

    • Displacement measures the change in position

     – Represented as x (if horizontal) or y (if vertical)

     – Vector quantity (i.e. needs directional information)• + or - is generally sufficient to indicate direction for one-dimensional motion

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    7/56

    Distance or Displacement?

    a x

    • Distance may be, but is not necessarily, the magnitude ofthe displacement

    Distance(blue line)

    Displacement

    (red line)

    A B

    b x  x

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    8/56

    Speed and Position

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    9/56

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    10/56

    Velocity

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    11/56

    Speed

    • Speed is a scalar quantity (no information about

    sign/direction is need)

     – same units as velocity

     – Average speed = total distance / total time

    • Speed is the magnitude of the velocity

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    12/56

    The velocity vector 

    • The velocity of an objecttells you both its speed and

    its direction of motion.•  A velocity can be positive or

    negative.

    • The positive or negative

    sign for velocity is based onthe calculation of a changein position.

    Two cars going opposite

    directions have the same

    speed, but their

    velocities are different—

    one is positive and the

    other is negative.

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    13/56

    The velocity vector 

    • Velocity is the change in position divided by the

    change in time.

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    14/56

    Average Velocity

    • It takes time for an object to undergo a displacement

    • The average velocity is rate at which the displacement

    occurs

    • Direction will be the same as the direction of the

    displacement (t is always positive)

     x x

     x

    v  i f  

    average

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    15/56

    Units of Velocity

    Units

    SI Meters per second (m/s)

    CGS Centimeters per second (cm/s)

    US Customary Feet per second (ft/s)

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    16/56

    Example:

    Suppose that in both cases truck

    covers the distance in 10 seconds:

     sm

     s

    m

     x

    v average

    7

    10

    701

    1

     sm

     s

    m

     xv average

    6

    10

    602

    2

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    17/56

    • Velocity can be determined from a position-timegraph

    •  Average velocity equals the slope of the line joiningthe initial and final positions

    Graphical Interpretation of Average Velocity

     sm

     s

    m

     x

    vaverage

    13

    0.3

    40

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    18/56

    Instantaneous Velocity

    • Instantaneous velocity is defined as the limit of the average

    velocity as the time interval becomes infinitesimally short,

    or as the time interval approaches zero

    • The instantaneous velocity indicates what is happening at

    every point of time

    dt 

     xd  x x xv

      i f  

    t t inst 

    ΔtlimΔtlim 00

    Δ

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    19/56

    Uniform Velocity

    • Uniform velocity is constant velocity

    • The instantaneous velocities are always the same

     – All the instantaneous velocities will also equal the

    average velocity

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    20/56

    Graphical Interpretation of Instantaneous Velocity

    • Instantaneous velocity is the slope of the tangent to the curve at

    the time of interest

    • The instantaneous speed is the magnitude of the instantaneous

    velocity

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    21/56

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    22/56

    Interpreting a distance versus

    time graph

    1. How many stops does itmake?

    2.  What is the boat’s averagespeed for the whole trip?

    3.  What is the highest speed theboat reaches?

    This distance versus time graph shows a boat travelingthrough a long canal. The boat has to stop at locks for

    changes in water level.

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    23/56

    Average vs Instantaneous Velocity

    Average velocity Instantaneous velocity

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    24/56

    Average Acceleration

    • Changing velocity (non-uniform) means an

    acceleration is present

    •  Average acceleration is the rate of change of the

    velocity

    •  Average acceleration is a vector quantity (i.e.described by both magnitude and direction)

    vv

    va

      i f  

    average

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    25/56

    I t t d U if

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    26/56

    Instantaneous and Uniform

    Acceleration

    • Instantaneous acceleration is the limit of the averageacceleration as the time interval goes to zero

    • When the instantaneous accelerations are always the same,the acceleration will be uniform

     – The instantaneous accelerations will all be equal to theaverage acceleration

    0 0

    lim lim  f i

    inst t t 

    v vva

    t t 

      dt 

    dv

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    27/56

    Graphical Interpretation of

    Acceleration

    •  Average acceleration is the

    slope of the line connecting the

    initial and final velocities on a

    velocity-time graph

    • Instantaneous acceleration is the

    slope of the tangent to the curve

    of the velocity-time graph

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    28/56

    Example 1: Motion Diagrams

    • Uniform velocity (shown by red arrows maintaining the

    same size)

    •  Acceleration equals zero

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    29/56

    Example 2:

    • Velocity and acceleration are in the same direction

    •  Acceleration is uniform (blue arrows maintain the same length)

    • Velocity is increasing (red arrows are getting longer)

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    30/56

    Example 3:

    •  Acceleration and velocity are in opposite directions

    •  Acceleration is uniform (blue arrows maintain the same length)

    • Velocity is decreasing (red arrows are getting shorter)

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    31/56

    Animation

    O di i l M ti With C t t

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    32/56

    One-dimensional Motion With Constant

    Acceleration

    • If acceleration is uniform (i.e. ):

    at vv o f    

    aa  

    vv

    t t 

    vv

    a

      o f  

     f  

    o f    

    0

    O di i l M ti With C t t

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    33/56

    One-dimensional Motion With Constant

    Acceleration

    • Used in situations with uniform acceleration

    t vv

    t v x  f  o

    average    

      

        2

    212

    o x v t at  Velocity changes

    uniformly!!!

    2 22 f ov v a x

    at vv o f    

    General Motion with Constant

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    34/56

    General Motion with Constant

    Acceleration

    2

    2

    1

    00

    2

    21

    0

    at t v x x

    at t v x

    at vvt    0

    Summary: Motion under constant

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    35/56

    Summary: Motion under constant

    acceleration

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    36/56

    Free Fall

    •  All objects moving under the influence of only

    gravity are said to be in free fall

    • All objects falling near the earth’s surface fall with

    a constant acceleration

    • This acceleration is called the acceleration due to

    gravity, and indicated by g

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    37/56

    Acceleration due to Gravity

    • Symbolized by g

    • g = 9.8 m/s² (can use g = 10 m/s² for estimates)

    • g is always directed downward – toward the center of the earth

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    38/56

    Free Fall -- an Object Dropped

    • Initial velocity is zero

    • Frame: let up be positive

    • Use the kinematic equations

     – Generally use y insteadof x since vertical

    vo= 0

    a = g

    2

    2

    8.9

    2

    1

     sma

    at  y

     y

     x

    Free Fall -- an Object Thrown

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    39/56

    Free Fall -- an Object Thrown

    Downward

    • a = g

     – With upward being positive,

    acceleration will be negative, g =

    -9.8 m/s²

    • Initial velocity 0 – With upward being positive,

    initial velocity will be negative

    Free Fall -- object thrown

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    40/56

    Free Fall -- object thrown

    upward

    • Initial velocity is upward,so positive

    • The instantaneous velocityat the maximum height is

    zero• a = g everywhere in the

    motion

     – g is always downward,

    negative

    v = 0

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    41/56

    Thrown upward

    • The motion may be symmetrical

     – then tup = tdown

     – then vf = -vo

    • The motion may not be symmetrical – Break the motion into various parts

    • generally up and down

    Non-symmetrical

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    42/56

    Non-symmetrical

    Free Fall

    • Need to divide the

    motion into segments

    • Possibilities include

     – Upward and downward

    portions

     – The symmetrical

    portion back to the

    release point and thenthe non-symmetrical

    portion

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    43/56

    Combination Motions

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    44/56

    Projectile Motion

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    45/56

    Rules of Projectile Motion

    • Introduce coordinate frame: y is up

    • The x- and y-components of motion can be treatedindependently

    • Velocities (incl. initial velocity) can be broken downinto its x- and y-components

    • The x-direction is uniform motionax = 0

    • The y-direction is free fall|ay|= g

    S

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    46/56

    Some Details About the Rules

    • x-direction – ax = 0

     –

     – x = vxot

    • This is the only operative equation in the x-directionsince there is uniform velocity in that direction

    constantvcosvv   xooxo  

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    47/56

    More Details About the Rules

    • y-direction –

     – take the positive direction as upward

     – then: free fall problem• only then: ay = -g (in general, |ay|= g)

     – uniformly accelerated motion, so the motion

    equations all hold

    ooy o   sinvv  

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    48/56

    Velocity of the Projectile

    • The velocity of the projectile at any point of its

    motion is the vector sum of its x and y components

    at that point

    x

    y12y

    2x

    v

    vtanandvvv  

    Maximum height reached

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    49/56

    Maximum height reached

    Time taken for getting there

    49

    Final velocity, v y  0

    Height reached, hmax  y  y0

    Using kinematics equation, v y2 v0 y

    2 2 g y  y0

      hmax v0 y

    2

    2 g 

    Time taken to reach this height, using v y  v0 y  gt ,

      t max  v0 y

     g 

    Depends only on the vertical component of the initial velocit

    M i R

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    50/56

    50

    Maximum Range

    Total time of travel, t 2v0 y

     g  (twice the time to top)

    Range is maximum distance traveled along horizontal axis

       R v0 xt  v0 x2v0 y

     g  v0 cos 0

    2v0 sin 0 g 

       R v0

    2 sin2 0

     g 

    , using trig. id. sin2   2sin cos 

    Depends on both magnitude and direction of initial velocit

    Maximum range is for sin2  1, i.e.,   45o

    E l f P j til M ti

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    51/56

    Examples of Projectile Motion:

    •  An object may be fired

    horizontally

    • The initial velocity is all in

    the x-direction

     – vo = vx and vy = 0

    •  All the general rules of

    projectile motion apply

    Non-Symmetrical Projectile

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    52/56

    Non Symmetrical Projectile

    Motion

    • Follow the general rulesfor projectile motion

    • Break the y-direction intoparts

     – up and down – symmetrical back to initial

    height and then the rest ofthe height

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    53/56

    Example problem:

    A rescue plane drops a package of

    emergency rations to a stranded party of

    explorers. The plane is traveling horizontally

    at 40.0 m/s at a height of 100 m above the

    ground.

    Where does the package strike the ground

    relative to the point at which it was released?

    Given:

    velocity: v=40.0 m/s

    height: h=100 m

    Find:

    Distance d=?

    2. Note: vox= v = + 40 m/s

    voy= 0 m/s

    1. Introduce coordinate frame:

    Oy: y is directed up

    Ox: x is directed right

    2

    2

    1 2: ,

    2

    2 ( 100 ): 4.51

    9.8

     yOy y gt so t  

     g 

    mor t s

    m s

    m s sm x sot v xOx  x   180)51.4)(40(,: 0    

    C T t 1

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    54/56

    ConcepTest 1

    Consider the situation depicted here. A gun is accuratelyaimed at a dangerous criminal hanging from the gutter of abuilding. The target is well within the gun’s range, but theinstant the gun is fired and the bullet moves with a speed v o,the criminal lets go and drops to the ground. What happens?The bullet

    1. hits the criminal regardlessof the value of v o.

    2. hits the criminal only if v o is

    large enough.

    3. misses the criminal.

    Equations for Constant x (meters)

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    55/56

    Equations for Constant

    Acceleration

    x = v0t + 1/2 at2 (parabolic)

    v = at (linear)

    v2 = v02 + 2a x (independent of time)

    0

    5

    10

    15

    20

    0 5 10 15 20

    v (m/s)

    t (seconds)

    0

    50

    100

    150

    200

    0 5 10 15 20

    t (seconds)

    0

    0.5

    1

    1.5

    2

    0 5 10 15 20

    a (m/s2)

    t (seconds)

    S f i t t t

  • 8/19/2019 Bahan Kuliah: Gerak Satu Dan Dua Dimensi

    56/56

    Summary of important concepts

    • position

    • displacement

    • velocity

     – average – instantaneous

    • acceleration

     – average

     – instantaneous

    9/17/2013 56